Sounding rocket project “PMWE” for investigation of polar mesosphere winter echoes

[1]  G. Baumgarten,et al.  Turbulence generated small-scale structures as PMWE formation mechanism: Results from a rocket campaign , 2021, Journal of Atmospheric and Solar-Terrestrial Physics.

[2]  H. Schlager,et al.  A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results , 2020, Atmospheric Measurement Techniques.

[3]  D. Murtagh,et al.  The MATS satellite mission – gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy , 2020 .

[4]  R. Latteck,et al.  D region observations by VHF and HF radars during a rocket campaign at Andøya dedicated to investigations of PMWE , 2019, Advances in Radio Science.

[5]  G. Baumgarten,et al.  Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations , 2019, Atmospheric Measurement Techniques.

[6]  M. Rapp,et al.  Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors on WADIS-2 , 2019, Atmospheric Measurement Techniques.

[7]  F. Lübken,et al.  Photocurrent modelling and experimental confirmation for meteoric smoke particle detectors on board atmospheric sounding rockets , 2018, Atmospheric Measurement Techniques.

[8]  M. Rapp,et al.  Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign , 2017 .

[9]  P. Chilson,et al.  Atmospheric Radar: Application and Science of MST Radars in the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions , 2017 .

[10]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[11]  M. Rapp,et al.  Effects of meteoric smoke particles on the D region ion chemistry , 2015 .

[12]  S. Fasoulas,et al.  Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes , 2015 .

[13]  M. Rapp,et al.  TURB3D: New Rocket-Borne Multi-Sensor System to Study Three-Dimensional Structures of Mesospheric Turbulence , 2015 .

[14]  M. Brede,et al.  Open Source Software Openfoam as a New Aerodynamical Simulation Tool for Rocket-Borne Measurements , 2015 .

[15]  R. Latteck,et al.  Extended observations of polar mesosphere winter echoes over Andøya (69°N) using MAARSY , 2015 .

[16]  M. Horányi,et al.  Detection of meteoric smoke particles in the mesosphere by a rocket-borne mass spectrometer , 2014 .

[17]  M. Gausa,et al.  A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere , 2014 .

[18]  H. Asmus,et al.  Charge Balance for the Mesosphere with Meteoric Dust Particles , 2013 .

[19]  M. Rapp,et al.  Meteor smoke influences on the D-region charge balance – review of recent in situ measurements and one-dimensional model results , 2013 .

[20]  M. Rapp,et al.  Statistical characteristics of PMWE observations by the EISCAT VHF radar , 2013 .

[21]  M. Rapp,et al.  MAARSY: The new MST radar on Andøya—System description and first results , 2012 .

[22]  M. Rapp,et al.  First three-dimensional observations of polar mesosphere winter echoes: Resolving space-time ambiguity , 2011 .

[23]  M. Nicolls,et al.  The electron density dependence of polar mesospheric summer echoes , 2011 .

[24]  M. Rapp,et al.  Bite-outs and other depletions of mesospheric electrons , 2011, Journal of atmospheric and solar-terrestrial physics.

[25]  A. Klekociuk,et al.  First observations of Southern Hemisphere polar mesosphere winter echoes including conjugate occurrences at ∼69°S latitude , 2011 .

[26]  M. Rapp,et al.  Microphysical parameters of mesospheric ice clouds derived from calibrated observations of polar mesosphere summer echoes at Bragg wavelengths of 2.8 m and 30 cm , 2010 .

[27]  M. Rapp,et al.  News from the Lower Ionosphere: A Review of Recent Developments , 2009 .

[28]  M. Nicolls,et al.  Spectral observations of polar mesospheric summer echoes at 33 cm (450 MHz) with the Poker Flat Incoherent Scatter Radar , 2009 .

[29]  M. Rapp,et al.  Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign , 2009 .

[30]  M. Rapp,et al.  Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. Results , 2009 .

[31]  M. Rapp,et al.  Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization , 2009 .

[32]  J. Russell,et al.  Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass density, particle shape, and particle size , 2009 .

[33]  M. Rapp,et al.  First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign , 2009 .

[34]  D. Meisel,et al.  Radio and Meteor Science Outcomes From Comparisons of Meteor Radar Observations at AMISR Poker Flat, Sondrestrom, and Arecibo , 2008 .

[35]  M. Rapp,et al.  Polar mesosphere summer echoes (PMSE) studied at Bragg wavelengths of 2.8 m, 67 cm, and 16 cm , 2008 .

[36]  Franz-Josef Lübken,et al.  Particle properties and water content of noctilucent clouds and their interannual variation , 2008 .

[37]  M. Rapp,et al.  On the efficiency of rocket-borne particle detection in the mesosphere , 2007 .

[38]  F. Lübken,et al.  Rocket measurements of positive ions during polar mesosphere winter echo conditions , 2006 .

[39]  Ronald F. Woodman,et al.  Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars , 2006 .

[40]  Gary E. Thomas,et al.  Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities , 2006 .

[41]  P. Chilson,et al.  Infrasound - the cause of strong Polar Mesosphere Winter Echoes? , 2006 .

[42]  Gregor E. Morfill,et al.  Complex (dusty) plasmas: current status, open issues, perspectives , 2005 .

[43]  F. Lübken,et al.  The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes , 2005 .

[44]  M. Rapp,et al.  Polar mesosphere summer echoes (PMSE): Review of observations and current understanding , 2004 .

[45]  F. Schmidlin,et al.  Polar mesosphere winter echoes during MaCWAVE , 2003 .

[46]  M. Rapp,et al.  On the nature of PMSE: Electron diffusion in the vicinity of charged particles revisited , 2003 .

[47]  U. Hoppe,et al.  Modeling the plasma response to small‐scale aerosol particle perturbations in the mesopause region , 2003 .

[48]  W. Hocking Evidence for viscosity, thermal conduction and diffusion waves in the Earth’s atmosphere (invited) , 2003 .

[49]  P. Chilson,et al.  Polar mesosphere winter echoes during solar proton events , 2002 .

[50]  M. Rapp,et al.  Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes , 2002 .

[51]  Abdullah Al Mamun,et al.  Introduction to Dusty Plasma Physics , 2001 .

[52]  Jörg Gumbel,et al.  Aerodynamic influences on atmospheric in situ measurements from sounding rockets , 2001 .

[53]  P. Shukla A survey of dusty plasma physics , 2001 .

[54]  Franz-Josef Lübken,et al.  Thermal structure of the Arctic summer mesosphere , 1999 .

[55]  D. Murtagh,et al.  Noctilucent Clouds and Odd Oxygen: Results of the NLC-93 Campaign , 1997 .

[56]  F. Lübken Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations , 1997 .

[57]  U. Zahn,et al.  The ALOMAR facility: status and outlook , 1995 .

[58]  S. Kirkwood,et al.  Quantitative Studies of Energetic Particle Precipitation Using Incoherent Scatter Radar. , 1995 .

[59]  Gerald A. Lehmacher,et al.  Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere , 1993 .

[60]  John Y. N. Cho,et al.  Polar mesosphere summer radar echoes: Observations and current theories , 1993 .

[61]  F. Lübken On the extraction of turbulent parameters from atmospheric density fluctuations , 1992 .

[62]  W. Hocking,et al.  Turbulence scattering layers in the middle‐mesosphere observed by the EISCAT 224‐MHz radar , 1992 .

[63]  John Y. N. Cho,et al.  On the role of charged aerosols in polar mesosphere summer echoes , 1992 .

[64]  T. Tsuda,et al.  Viscosity waves and thermal‐conduction waves as a cause of “specular” reflectors in radar studies of the atmosphere , 1991 .

[65]  T. Blix,et al.  In situ measurements of the fine-scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic positive ion probes , 1990 .

[66]  J. Röttger,et al.  The structure and dynamics of polar mesosphere summer echoes observed with the EISCAT 224 MHz radar , 1988 .

[67]  Jürgen Röttger,et al.  The effect of cluster ions on anomalous VHF backscatter from the summer polar mesosphere , 1987 .

[68]  M. Baron EISCAT progress 1983–1985 , 1986 .

[69]  O. Røyrvik,et al.  Comparison of mesospheric VHF radar echoes and rocket probe electron concentration measurements , 1984 .

[70]  W. Ecklund,et al.  Long‐term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska , 1981 .

[71]  Peter Czechowsky,et al.  Variations of Mesospheric Structures in Different Seasons , 1979 .

[72]  Ronald F. Woodman,et al.  Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere. , 1974 .

[73]  J. Hall,et al.  D-REGION ELECTRON DENSITIES AND COLLISION FREQUENCIES FROM FARADAY ROTATION AND DIFFERENTIAL ABSORPTION MEASUREMENTS. , 1972 .

[74]  H. Óttersten,et al.  Radar Backscattering from the Turbulent Clear Atmosphere , 1969 .

[75]  R. H. Snow,et al.  SECONDARY PARTICULATE MATTER FROM METEOR VAPORS , 1961 .

[76]  G. Batchelor Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity , 1959, Journal of Fluid Mechanics.

[77]  S. P. Näsholm,et al.  Polar Mesosphere Winter Echoes and their relation to infrasound , 2020 .

[78]  Marcus Hörschgen-Eggers,et al.  Search and Rescue: Development and Verification of a Modernized Passive Floating System for Payload Sea Recovery , 2019 .

[79]  Franz-Josef Lübken,et al.  Climate and Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program , 2013 .

[80]  M. Rapp,et al.  Charged Aerosol Effects on the Scattering of Radar Waves from the D-Region , 2013 .

[81]  M. Rapp,et al.  In-situ density measurements in the mesosphere/lower thermosphere region with the TOTAL and CONE instruments , 2013 .

[82]  M. Rapp,et al.  In Situ Measurements of Small-Scale Structures in Neutrals and Charged Aerosols , 2011 .

[83]  M. Rapp,et al.  Microphysical Properties of Mesospheric Aerosols: An Overview of In Situ-Results from the ECOMA Project , 2011 .

[84]  W. Singer,et al.  A new narrow beam Doppler radar at 3 MHz for studies of the high-latitude middle atmosphere , 2008 .

[85]  W. Singer,et al.  Radar measurements of turbulence, electron densities, and absolute reflectivities during polar mesosphere winter echoes (PMWE) , 2007 .

[86]  V. Molotkov,et al.  Dusty plasmas , 2004 .

[87]  D. Hughes Meteors and cosmic dust , 1997 .

[88]  Kenneth S. Gage,et al.  Radar Observations of the Free Atmosphere: Structure and Dynamics , 1990 .

[89]  J. Röttger,et al.  First observations of summer polar mesospheric backscatter with a 224 MHz radar , 1988 .