One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications

[1]  Di Wu,et al.  High-performance CdS:P nanoribbon field-effect transistors constructed with high-κ dielectric and top-gate geometry , 2010 .

[2]  Shui-Tong Lee,et al.  High-Performance CdSe:In Nanowire Field-Effect Transistors Based on Top-Gate Configuration with High-κ Non-Oxide Dielectrics , 2010 .

[3]  Zhong Lin Wang,et al.  Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors , 2010 .

[4]  Yitai Qian,et al.  High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors , 2009, Advanced materials.

[5]  S. T. Lee,et al.  Coaxial nanocables of p-type zinc telluride nanowires sheathed with silicon oxide: synthesis, characterization and properties , 2009, Nanotechnology.

[6]  Xiaohong Li,et al.  Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition , 2009, Nanotechnology.

[7]  R. Ma,et al.  Schottky junction photovoltaic devices based on CdS single nanobelts , 2009, Nanotechnology.

[8]  Wei Chen,et al.  Surface transfer doping of semiconductors , 2009 .

[9]  C. Zhi,et al.  Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope , 2009 .

[10]  Shui-Tong Lee,et al.  p-type conduction in arsenic-doped ZnSe nanowires , 2009 .

[11]  Zhong Lin Wang,et al.  Intercrossed Sheet-Like Ga-Doped ZnS Nanostructures with Superb Photocatalytic Actvitiy and Photoresponse , 2009 .

[12]  Shui-Tong Lee,et al.  ZnS/ZnO Heterojunction Nanoribbons , 2009 .

[13]  Jong-Ho Lee,et al.  Comparative Study of Electrical Instabilities in Top-Gate InGaZnO thin Film Transistors with Al2O3 and Al2O3/SiNx Gate Dielectrics , 2009 .

[14]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[15]  Changze Liu,et al.  High-performance CdS nanobelt field-effect transistors with high-κ HfO2 top-gate dielectrics , 2009 .

[16]  T. Kang,et al.  Synthesis and Magnetic Properties of Single-Crystalline Mn/Fe-Doped and Co-doped ZnS Nanowires and Nanobelts , 2009 .

[17]  H. Yoon,et al.  The growth and optical properties of CdSSe nanosheets , 2009, Nanotechnology.

[18]  A. Pan,et al.  Ordered CdS micro/nanostructures on CdSe nanostructures , 2009, Nanotechnology.

[19]  T. Sham,et al.  Optical emission of biaxial ZnO-ZnS nanoribbon heterostructures. , 2009, The Journal of chemical physics.

[20]  Lide Zhang,et al.  Density-Controlled Homoepitaxial Growth of ZnS Nanowire Arrays , 2009 .

[21]  S. Mao,et al.  Ohmic contacts and photoconductivity of individual ZnTe nanowires , 2009 .

[22]  Shui-Tong Lee,et al.  Formation and Photoelectric Properties of Periodically Twinned ZnSe/SiO2 Nanocables , 2009 .

[23]  Liang Shi,et al.  Controlled Fabrication of ZnSe Arrays of Well-Aligned Nanorods, Nanowires, and Nanobelts with a Facile Template-Free Route , 2009 .

[24]  Chongwu Zhou,et al.  p-Type field-effect transistors of single-crystal zinc telluride nanobelts. , 2008, Angewandte Chemie.

[25]  S. T. Lee,et al.  p-type conduction in nitrogen-doped ZnS nanoribbons , 2008 .

[26]  Yanguo Wang,et al.  I-V Characteristics of Metal-Oxide-ZnSe Nanowire Structure , 2008 .

[27]  Wenjun Zhang,et al.  Surface‐Dominated Transport Properties of Silicon Nanowires , 2008 .

[28]  S. Mao,et al.  Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures , 2008 .

[29]  C. Bougerol,et al.  CdSe quantum dots in ZnSe nanowires as efficient source for single photons up to 220 K , 2008, 0809.2946.

[30]  Kai Wang,et al.  Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications , 2008 .

[31]  Chongwu Zhou,et al.  Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays , 2008 .

[32]  Yitai Qian,et al.  Preparation and Characterization of Cubic and Hexagonal Polytypes of ZnSe:Cu2+ One-Dimensional Nanostructures , 2008 .

[33]  H. Kim,et al.  Transformation of ZnTe nanowires to CdTe nanowires through the formation of ZnCdTe–CdTe core–shell structure by vapor transport , 2008 .

[34]  C. Shan,et al.  Side-by-side ZnSe/ZnCdSe Bicrystalline Nanoribbons Prepared by a Two-Step Process , 2007 .

[35]  S. T. Lee,et al.  Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons , 2007 .

[36]  Zhong Lin Wang,et al.  ZnS/Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors , 2007 .

[37]  Shui-Tong Lee,et al.  Photoresponse Properties of CdSe Single‐Nanoribbon Photodetectors , 2007 .

[38]  S. Neretina,et al.  Vertically aligned wurtzite CdTe nanowires derived from a catalytically driven growth mode , 2007 .

[39]  Jeunghee Park,et al.  (Mn, Zn) co-doped CdS nanowires , 2007 .

[40]  Yang Jiang,et al.  Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays , 2007 .

[41]  Xuhui Sun,et al.  One-dimensional silicon-cadmium selenide heterostructures. , 2007 .

[42]  Shui-Tong Lee,et al.  Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons , 2007 .

[43]  Shree Krishna Acharya,et al.  Polarization Properties and Switchable Assembly of Ultranarrow ZnSe Nanorods , 2007, Advanced Materials.

[44]  S. Ray,et al.  Characteristics of CdS nanowires grown in a porous alumina template using a two-cell method , 2007 .

[45]  Shui-Tong Lee,et al.  Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons , 2007 .

[46]  Hongkun Park,et al.  Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures. , 2007, Journal of the American Chemical Society.

[47]  R. Ma,et al.  Electrical properties of Cu doped p-ZnTe nanowires , 2006 .

[48]  Harry E. Ruda,et al.  Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection , 2006 .

[49]  D. D. D. Ma,et al.  Photoluminescence and photoconductivity properties of copper-doped Cd1−xZnxS nanoribbons , 2006 .

[50]  Xuhui Sun,et al.  Time-resolved x-ray-excited optical luminescence characterization of one-dimensional Si–CdSe heterostructures , 2006 .

[51]  Shui-Tong Lee,et al.  Transport properties of single-crystal CdS nanoribbons , 2006 .

[52]  R. Ma,et al.  Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices , 2006 .

[53]  Zhong Lin Wang,et al.  High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. , 2006, The journal of physical chemistry. B.

[54]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[55]  Shui-Tong Lee,et al.  Single-crystal CdSe nanoribbon field-effect transistors and photoelectric applications , 2006 .

[56]  T. Wojtowicz,et al.  ZnTe nanowires grown on GaAs(100) substrates by molecular beam epitaxy , 2006 .

[57]  Jianwei Sun,et al.  Solution-liquid-solid growth of semiconductor nanowires. , 2006, Inorganic chemistry.

[58]  Hui Chen,et al.  ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air , 2006 .

[59]  Youngjin Choi,et al.  Band gap modulation in CdSxSe1−x nanowires synthesized by a pulsed laser ablation with the Au catalyst , 2006 .

[60]  R. Zhang,et al.  Direct synthesis and characterization of CdS nanobelts , 2006 .

[61]  S. T. Lee,et al.  Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition , 2006 .

[62]  Yang Jiang,et al.  Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays , 2006 .

[63]  T. Wang,et al.  I–V characteristics of Schottky contacts of semiconducting ZnSe nanowires and gold electrodes , 2006 .

[64]  T. I. Yuk,et al.  Synthesis of wurtzite ZnSe nanorings by thermal evaporation , 2006 .

[65]  S.C. Rustagi,et al.  High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices , 2006, IEEE Electron Device Letters.

[66]  A. Pan,et al.  Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature , 2006 .

[67]  Xia Fan,et al.  Dart-shaped tricrystal ZnS nanoribbons. , 2006, Angewandte Chemie.

[68]  Shui-Tong Lee,et al.  Catalyst-assisted formation of nanocantilever arrays on ZnS nanoribbons by post-annealing treatment. , 2006, The journal of physical chemistry. B.

[69]  Jeunghee Park,et al.  Photoluminescence of Cd1-xMnxS (x < or = 0.3) nanowires. , 2006, The journal of physical chemistry. B.

[70]  Weihua Tang,et al.  Preparation and characterization of CdS/Si coaxial nanowires , 2006 .

[71]  M. Meyyappan,et al.  Nanotechnology: Role in emerging nanoelectronics , 2006 .

[72]  X. Fang,et al.  Manipulation of the Morphology of CdSe Nanostructures: The Effect of Si , 2006 .

[73]  T. I. Yuk,et al.  Self-catalytic ZnSe nanorods on grains synthesized using thermal evaporation method , 2006 .

[74]  Shui-Tong Lee,et al.  Manganese doping and optical properties of ZnS nanoribbons by postannealing , 2006 .

[75]  Y. F. Chan,et al.  The Size‐Dependent Growth Direction of ZnSe Nanowires , 2006 .

[76]  Shui-Tong Lee,et al.  Fabrication and characterization of Zn-doped CdTe nanowires , 2005 .

[77]  B. Cheng,et al.  Synthesis and Optical Properties of Europium‐Doped ZnS: Long‐Lasting Phosphorescence from Aligned Nanowires , 2005 .

[78]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[79]  A. Pan,et al.  Color-tunable photoluminescence of alloyed CdS(x)Se(1-x) nanobelts. , 2005, Journal of the American Chemical Society.

[80]  Shree Krishna Acharya,et al.  Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One‐Dimensional Properties , 2005, Advanced Materials.

[81]  S. Hark,et al.  Highly oriented zinc blende CdSe nanoneedles , 2005 .

[82]  G.‐C. Yi,et al.  ZnSe–Si Bi‐coaxial Nanowire Heterostructures , 2005 .

[83]  Yit‐Tsong Chen,et al.  Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. , 2005, Journal of the American Chemical Society.

[84]  Lide Zhang,et al.  Fabrication and characterization of single-crystalline ZnTe nanowire arrays. , 2005, The journal of physical chemistry. B.

[85]  W. Park,et al.  ZnO Nanorod Logic Circuits , 2005, Advanced materials.

[86]  Xitian Zhang,et al.  Routes to Grow Well‐Aligned Arrays of ZnSe Nanowires and Nanorods , 2005, Advanced materials.

[87]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[88]  Xitian Zhang,et al.  Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition , 2005 .

[89]  I. Sou,et al.  MBE-grown Au-island-catalyzed ZnSe nanowires , 2005 .

[90]  F. Ren,et al.  Pt∕ZnO nanowire Schottky diodes , 2004 .

[91]  Shui-Tong Lee,et al.  High-quality CdS nanoribbons with lasing cavity , 2004 .

[92]  Zhong Lin Wang,et al.  Crystal orientation-ordered ZnS nanowire bundles. , 2004, Journal of the American Chemical Society.

[93]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[94]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[95]  S. Hark,et al.  Size‐Dependent Periodically Twinned ZnSe Nanowires , 2004 .

[96]  Zhiyong Liu,et al.  Luminescence of ZnSe nanowires grown by metalorganic vapor phase deposition under different pressures , 2004 .

[97]  Zhiyong Liu,et al.  Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition , 2004 .

[98]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[99]  Shui-Tong Lee,et al.  Zinc Selenide Nanoribbons and Nanowires , 2004 .

[100]  Zhong Lin Wang,et al.  Single-crystal CdSe nanosaws. , 2004, Journal of the American Chemical Society.

[101]  Shui-Tong Lee,et al.  Structure- and size-controlled ultrafine ZnS nanowires , 2003 .

[102]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[103]  Charles M Lieber,et al.  Synthesis of CdS and ZnS nanowires using single-source molecular precursors. , 2003, Journal of the American Chemical Society.

[104]  J. Jiao,et al.  Catalytic growth of CdS nanobelts and nanowires on tungsten substrates , 2003 .

[105]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[106]  Z. Wang Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices , 2003 .

[107]  Shui-Tong Lee,et al.  Hydrogen‐Assisted Thermal Evaporation Synthesis of ZnS Nanoribbons on a Large Scale , 2003 .

[108]  Zhongqiu Wang,et al.  Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS , 2003 .

[109]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[110]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[111]  John L. Freeouf,et al.  Atomic layer deposition of ZnSe/CdSe superlattice nanowires , 2002 .

[112]  Jinhee Kim,et al.  Schottky diodes based on a single GaN nanowire , 2002 .

[113]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[114]  Ning Wang,et al.  A General Synthetic Route to III-V Compound Semiconductor Nanowires** , 2001 .

[115]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[116]  Di Chen,et al.  Preparation of CdS Single‐Crystal Nanowires by Electrochemically Induced Deposition , 2000 .

[117]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[118]  Yadong Li,et al.  A Novel Chemical Route to ZnTe Semiconductor Nanorods , 1999 .

[119]  Ning Wang,et al.  Silicon nanowires prepared by laser ablation at high temperature , 1998 .

[120]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[121]  J. Nakajima,et al.  16.0% Efficient Thin-Film CdS/CdTe Solar Cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[122]  M. Ikeda,et al.  100h II-VI blue-green laser diode , 1996 .

[123]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[124]  J. Merz,et al.  Spectroscopic characterization of band discontinuity in free‐standing CdZnS/ZnS strained layer superlattices , 1994 .

[125]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[126]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[127]  D. Kisker Issues in the OMVPE growth of II–VI alloys for optoelectronics , 1989 .

[128]  T. Langdon,et al.  A new type of deformation mechanism map for high-temperature creep , 1978 .

[129]  D. Jena,et al.  Ultrathin CdSe nanowire field-effect transistors , 2006 .

[130]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[131]  U. Desnica Doping limits in II–VI compounds — Challenges, problems and solutions , 1998 .

[132]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .