Brownian Models of Performance and Control

Direct and to the point, this book from one of the field's leaders covers Brownian motion and stochastic calculus at the graduate level, and illustrates the use of that theory in various application domains, emphasizing business and economics. The mathematical development is narrowly focused and briskly paced, with many concrete calculations and a minimum of abstract notation. The applications discussed include: the role of reflected Brownian motion as a storage model, queuing model, or inventory model; optimal stopping problems for Brownian motion, including the influential McDonald–Siegel investment model; optimal control of Brownian motion via barrier policies, including optimal control of Brownian storage systems; and Brownian models of dynamic inference, also called Brownian learning models or Brownian filtering models.

[1]  J. Curtiss A Note on the Theory of Moment Generating Functions , 1942 .

[2]  Harold J. Kushner,et al.  Optimal stochastic control , 1962 .

[3]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[4]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[5]  Herman Chernoff,et al.  Sequential decisions in the control of a space-ship (finite fuel) , 1967 .

[6]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[7]  M. Degroot Optimal Statistical Decisions , 1970 .

[8]  J. Harrison Assembly-like queues , 1973, Journal of Applied Probability.

[9]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[10]  J. Michael Harrison,et al.  A diffusion approximation for the ruin function of a risk process with compounding assets , 1975 .

[11]  A. Bensoussan,et al.  Nouvelles Methodes en Contrôle Impulsionnel , 1975 .

[12]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[13]  J. Michael Harrison,et al.  Ruin problems with compounding assets , 1977 .

[14]  A. J. Taylor,et al.  Optimal control of a Brownian storage system , 1978 .

[15]  J. Harrison The diffusion approximation for tandem queues in heavy traffic , 1978, Advances in Applied Probability.

[16]  P. Billingsley,et al.  Probability and Measure , 1980 .

[17]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[18]  H. Witsenhausen,et al.  Some solvable stochastic control problemst , 1980 .

[19]  Austin J. Lemoine,et al.  Sticky Brownian motion as the limit of storage processes , 1981, Journal of Applied Probability.

[20]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[21]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[22]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[23]  J. Michael Harrison,et al.  Impulse Control of Brownian Motion , 1983, Math. Oper. Res..

[24]  J. Michael Harrison,et al.  Instantaneous Control of Brownian Motion , 1983, Math. Oper. Res..

[25]  Ruth J. Williams,et al.  Introduction to Stochastic Integration , 1994 .

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[28]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[29]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[30]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[31]  S. Shreve,et al.  An explicit formula for the Skorokhod map on [0,a]. , 2007, 0710.2977.

[32]  John H. Vande Vate,et al.  Impulse Control of Brownian Motion: The Constrained Average Cost Case , 2008, Oper. Res..

[33]  Masahiko Egami A Direct Solution Method for Stochastic Impulse Control Problems of One-dimensional Diffusions , 2008, SIAM J. Control. Optim..

[34]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[35]  Brendan Daley,et al.  Waiting for News in the Market for Lemons , 2011 .