Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data

[1]  M Muskulus,et al.  Simplified rotor load models and fatigue damage estimates for offshore wind turbines , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  John Dalsgaard Sørensen,et al.  Assessment of Wind Turbine Structural Integrity using Response Surface Methodology , 2016 .

[3]  Casey S. Greene,et al.  Extracting a Biologically Relevant Latent Space from Cancer Transcriptomes with Variational Autoencoders , 2017, bioRxiv.

[4]  Tim Rubert,et al.  Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK , 2018 .

[5]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[6]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[7]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[8]  Nobuo Namura Wind shear estimation model using load measurement of wind turbine tower and surrogate model , 2020 .

[9]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[10]  Geoffrey E. Hinton Boltzmann machine , 2007, Scholarpedia.

[11]  Martin Stettner,et al.  Dimensionality Reduction for the Analysis of Time Series Data from Wind Turbines , 2017, Scientific Computing and Algorithms in Industrial Simulations.

[12]  Neil Kelley,et al.  Overview of the TurbSim Stochastic Inflow Turbulence Simulator , 2005 .

[13]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[14]  John Dalsgaard Sørensen,et al.  Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates , 2018 .

[15]  J. Mann Wind field simulation , 1998 .

[16]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[17]  Walter Musial,et al.  Comprehensive testing of Nedwind 12-Meter wind turbine blades at NREL , 2000 .

[18]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[19]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[20]  Dayton A. Griffin,et al.  WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor , 2001 .

[21]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[22]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Daniel Kirschen,et al.  Model-Free Renewable Scenario Generation Using Generative Adversarial Networks , 2017, IEEE Transactions on Power Systems.

[24]  Qi Jin,et al.  Planetary gearbox fault feature learning using conditional variational neural networks under noise environment , 2019, Knowl. Based Syst..

[25]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[27]  Deep Unsupervised Learning for Condition Monitoring and Prediction of High Dimensional Data with Application on Windfarm SCADA Data , 2019, Model Validation and Uncertainty Quantification, Volume 3.

[28]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[29]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[30]  Jacob Berg,et al.  From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases , 2018, Wind Energy Science.

[31]  Ryan Prenger,et al.  Waveglow: A Flow-based Generative Network for Speech Synthesis , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[34]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[35]  Martin Dazer,et al.  Damage Assessment of Floating Offshore Wind Turbines Using Response Surface Modeling , 2017 .

[36]  Lei Deng,et al.  Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine , 2014 .

[37]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[38]  Hedvig Kjellström,et al.  Advances in Variational Inference , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[40]  H. F. Veldkamp,et al.  Chances in wind energy: A probalistic approach to wind turbine fatigue design , 2006 .

[41]  Darío Pérez‐Campuzano,et al.  Modelling damage equivalent loads in wind turbines from general operational signals: Exploration of relevant input selection methods using aeroelastic simulations , 2018 .

[42]  John Dalsgaard Sørensen,et al.  Surrogate model uncertainty in wind turbine reliability assessment , 2020, Renewable Energy.

[43]  Geoffrey E. Hinton Deep belief networks , 2009, Scholarpedia.

[44]  Qi Wang,et al.  BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework , 2017 .

[45]  Peter J. Fleming,et al.  Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach , 2016 .

[46]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[47]  Mijin Choi,et al.  On damage diagnosis for a wind turbine blade using pattern recognition , 2014 .

[48]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[49]  Weiping Zhu,et al.  Data-Driven EV Load Profiles Generation Using a Variational Auto-Encoder , 2019, Energies.

[50]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .