Constant mean curvature foliations of flat space--times

Let $V$ be a maximal globally hyperbolic flat $n+1$--dimensional space--time with compact Cauchy surface of hyperbolic type. We prove that $V$ is globally foliated by constant mean curvature hypersurfaces $M_{\tau}$, with mean curvature $\tau$ taking all values in $(-\infty, 0)$. For $n \geq 3$, define the rescaled volume of $M_{\tau}$ by $\Ham = |\tau|^n \Vol(M,g)$, where $g$ is the induced metric. Then $\Ham \geq n^n \Vol(M,g_0)$ where $g_0$ is the hyperbolic metric on $M$ with sectional curvature -1. Equality holds if and only if $(M,g)$ is isometric to $(M,g_0)$.

[1]  L. Andersson,et al.  Elliptic-Hyperbolic Systems and the Einstein Equations , 2001, gr-qc/0110111.

[2]  Kevin P. Scannell 3-manifolds which are spacelike slices of flat spacetimes , 2000, math/0011021.

[3]  Michael T. Anderson On Long-Time Evolution in General Relativity¶and Geometrization of 3-Manifolds , 2000, gr-qc/0006042.

[4]  Michael T. Anderson Scalar Curvature, Metric Degenerations and the Static Vacuum Einstein Equations on 3-manifolds, I , 1999, math/9912162.

[5]  A. Fischer,et al.  LETTER TO THE EDITOR: The Einstein flow, the sigma-constant and the geometrization of 3-manifolds , 1999 .

[6]  Vincent Moncrief,et al.  The Einstein flow, the -constant and the geometrization of 3-manifolds , 1999 .

[7]  C. Lebrun,et al.  Kodaira dimension and the Yamabe problem , 1997, dg-ga/9702012.

[8]  L. Andersson,et al.  On the global evolution problem in 2 + 1 gravity , 1996, gr-qc/9610013.

[9]  Michael T. Anderson Scalar Curvature and Geometrization Conjectures for 3-Manifolds , 1997 .

[10]  Gérard Besson,et al.  Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .

[11]  M. Kapovich Deformations of representations of discrete subgroups of SO(3, 1) , 1994 .

[12]  R. Puzio The Gauss map and 2 + 1 gravity , 1994, gr-qc/9403012.

[13]  Raymond S Puzio The Gauss map and 2 + 1 gravity , 1994 .

[14]  G. Besson,et al.  Volume et entropie minimale des espaces localement symétriques , 1991 .

[15]  J. Cheeger,et al.  Diffeomorphism finiteness for manifolds with ricci curvature andLn/2-norm of curvature bounded , 1991 .

[16]  H. Choi,et al.  Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space , 1990 .

[17]  J. Millson,et al.  Deformation Spaces Associated to Compact Hyperbolic Manifolds , 1986 .

[18]  Claus Gerhardt H-surfaces in Lorentzian manifolds , 1983 .

[19]  J. Marsden,et al.  Maximal hypersurfaces and foliations of constant mean curvature in general relativity , 1980 .

[20]  Andrejs E. Treibergs Entire spacelike hypersurfaces of constant mean curvature in Minkowski Space , 1980 .

[21]  Dieter R. Brill,et al.  Isolated maximal surfaces in spacetime , 1976 .

[22]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[23]  R. Geroch,et al.  Global aspects of the Cauchy problem in general relativity , 1969 .

[24]  M. Artin,et al.  On the solutions of analytic equations , 1968 .