A magnetisation and Mössbauer study of triazole (M1-x2+Mx3+)M3+F5(Htaz)1-x(taz)x weberites (M = Fe, Co, Mn, Zn, Ga, V).
暂无分享,去创建一个
P. Lightfoot | V. Maisonneuve | J. Greneche | M. Leblanc | J. Lhoste | M. Albino | L. Clark | C. Payen
[1] V. Maisonneuve,et al. [H2amtaz]+ iron fluorides: Synthesis, crystal structures, magnetic and Mössbauer studies , 2015 .
[2] Karren L. More,et al. Cover Picture: Excellent Stability of a Lithium‐Ion‐Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions (Angew. Chem. Int. Ed. 1/2015) , 2015 .
[3] M. Dammak,et al. New series of hybrid fluoroferrates synthesized with triazoles: various dimensionalities and Mössbauer studies. , 2013, Dalton transactions.
[4] M. Tong,et al. Incomplete Spin Crossover versus Antiferromagnetic Behavior Exhibited in Three-Dimensional Porous Fe(II)-Bis(tetrazolate) Frameworks , 2012 .
[5] J. Attfield,et al. An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice. , 2011, Nature chemistry.
[6] V. Maisonneuve,et al. ZnAlF5·[TAZ]: an Al fluorinated MOF of MIL-53(Al) topology with cationic {Zn(1,2,4 triazole)}2+ linkers , 2011 .
[7] C. Serre,et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) , 2011 .
[8] M. Kurmoo. Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.
[9] A. Demourgues,et al. Microwave Synthesis of an Aluminum Fluoride Hydrate with Cationic Vacancies: Structure, Thermal Stability, and Acidic Properties , 2008 .
[10] R. Fishman,et al. Giant negative magnetization in a layered organic magnet. , 2007, Physical review letters.
[11] Song Gao,et al. [Fe3(HCOO)6]: A Permanent Porous Diamond Framework Displaying H2/N2 Adsorption, Guest Inclusion, and Guest‐Dependent Magnetism , 2007 .
[12] Song Gao,et al. A family of porous magnets, [M3(HCOO)6] (M = Mn, Fe, Co and Ni) , 2007 .
[13] G. Tang,et al. Multiple magnetic-pole reversals in the molecular-based mixed-valency ferrimagnet {[N(n-C4H9)4][FeFe(C2O4)3]}n , 2007 .
[14] S. Ng,,et al. Cobalt(II) formate hydroxide , 2005 .
[15] M. Green,et al. Synthesis and characterization of a porous magnetic diamond framework, Co3(HCOO)6, and its N2 sorption characteristic. , 2005, Inorganic chemistry.
[16] A. Powell,et al. Iron(II) Formate [Fe(O2CH)2]·1/3HCO2H: A Mesoporous Magnet − Solvothermal Syntheses and Crystal Structures of the Isomorphous Framework Metal(II) Formates [M(O2CH)2]·n(Solvent) (M = Fe, Co, Ni, Zn, Mg) , 2005 .
[17] Bin Zhang,et al. Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. , 2004, Chemical communications.
[18] P. Day. Reply to “Contradicting Reports on Magnetic Properties of Layered Molecule-Based Material N(n-C3H7)4[FeIIFeIII(C2O4)3]” , 2003 .
[19] A. Demourgues,et al. Chemistry and key structural features of oxyhydroxy-fluorides : relationships with the acidic character, thermal stability and surface area , 2002 .
[20] Ivan Škorvánek,et al. Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy , 2002 .
[21] J. Kováč,et al. Structural and magnetic properties of metastable Fe1-xSix (0.15 < x < 0.34) alloys prepared by a rapid-quenching technique , 2002 .
[22] M. Gingras,et al. Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.
[23] L. M. Rodriguez-Martinez,et al. Electrostatically driven charge-ordering in Fe2OBO3 , 1998, Nature.
[24] P. Day,et al. Magnetization of the layer compounds AFeIIFeIII(C2O4)3 (A = organic cation), in low and high magnetic fields : Manifestation of Néel N and Q type ferrimagnetism in a molecular lattice , 1998 .
[25] J. Greneche,et al. Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: II. The topography of hyperfine interactions in Fe(Cu)ZrB alloys , 1997 .
[26] U. Bentrup. Über die thermische Entwässerung der Fluoridhydrate FeMIIIF5·7H2O (MIII = Al, Fe, V, Cr) , 1996 .
[27] J. Greneche,et al. Mössbauer spectroscopy of the magnetic behaviour of the frustrated series AFeF5(H2O)2:A = Mn, Fe, Co, Ni , 1988 .
[28] J. Greneche,et al. Crystal structure of the inverse weberite ZnFeF5(H2O)2, magnetic and mössbauer study of the antiferromagnet ZnFeF5(H2O)2 and ferrimagnet Mn FeF5(H2O)2 , 1986 .
[29] J. Pannetier,et al. Ordered magnetic frustration — V. Antiferromagnetic structure of the hexagonal bronzoid HTBFeF3; Comparison with the non frustrated rhombohedral form , 1986 .
[30] J. Pannetier,et al. A new refinement of the crystal structure of the inverse weberite Fe2F5(H2O)2 , 1986 .
[31] F. Varret,et al. Structural transformation from amorphous to hexagonal tungsten bronze FeF3, studied by Mössabauer spectroscopy , 1984 .
[32] M. Leblanc,et al. Idle spin behavior of the shifted hexagonal tungsten bronze type compounds FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2 , 1984 .
[33] R. Dawson,et al. Ferrimagnetism in FeCoF5⋅2H2O , 1979 .
[34] D. Babel,et al. Die Verfeinerung der Weberitstruktur der Verbindung Na2NiFeF7 , 1978 .
[35] Y. Macheteau,et al. Étude par effet Mössbauer de Fe2F5, 2 H2O , 1976 .
[36] J. Kolis,et al. An Extended Solid from the Solvothermal Decomposition of Co(Acac)3: Structure and Characterization of Co5(OH)2(O2CCH3)8·2H2O , 1999 .
[37] G. Toulouse,et al. The frustration model , 1980 .
[38] L. Néel,et al. Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .
[39] W. J. Haas,et al. Further measurements of the magnetic properties of some salts of the iron group at low temperatures , 1940 .