A magnetisation and Mössbauer study of triazole (M1-x2+Mx3+)M3+F5(Htaz)1-x(taz)x weberites (M = Fe, Co, Mn, Zn, Ga, V).

A series of triazole fluoride weberites (M1-x2+Mx3+)M3+F5(Htaz)1-x(taz)x is obtained by hydrothermal synthesis. All phases are found to be isostructural to ZnAlF5(Htaz) by powder X-ray diffraction. Weberite structures are prone to induce the magnetic frustration of antiferromagnetic interactions originating from the cationic topology of HTB layers. The (nD) magnetic properties of (0D) Co-Ga, (1D) Zn-Fe, (3D) Fe-Ga, Mn-Fe, Co-Fe and Co-V couples are thus reported. Co2+ or Fe2+ magnetic anisotropy induces a negative magnetisation below TN and compensation temperatures for Mn-Fe and Co-Fe couples. All iron 3D magnetic phases exhibit high Néel temperatures, between 81 K and 102 K, and large |θP/TN| ratios, signalling strong magnetic frustration. Their cation site occupancies and the deduced (de)protonation states of the amine are accurately determined by 57Fe Mössbauer spectrometry. In addition, this spectroscopy evidences a subtle effect of the atmosphere that surrounds the samples: the magnetic ordering temperatures TN decrease significantly when the samples are cooled under vacuum with respect to samples that are cooled at ambient pressure. This novel phenomenon, which is highlighted for all studied (3D) triazole iron weberites, is reversible, and thus provides promising perspectives for understanding the underlying mechanism.

[1]  V. Maisonneuve,et al.  [H2amtaz]+ iron fluorides: Synthesis, crystal structures, magnetic and Mössbauer studies , 2015 .

[2]  Karren L. More,et al.  Cover Picture: Excellent Stability of a Lithium‐Ion‐Conducting Solid Electrolyte upon Reversible Li+/H+ Exchange in Aqueous Solutions (Angew. Chem. Int. Ed. 1/2015) , 2015 .

[3]  M. Dammak,et al.  New series of hybrid fluoroferrates synthesized with triazoles: various dimensionalities and Mössbauer studies. , 2013, Dalton transactions.

[4]  M. Tong,et al.  Incomplete Spin Crossover versus Antiferromagnetic Behavior Exhibited in Three-Dimensional Porous Fe(II)-Bis(tetrazolate) Frameworks , 2012 .

[5]  J. Attfield,et al.  An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice. , 2011, Nature chemistry.

[6]  V. Maisonneuve,et al.  ZnAlF5·[TAZ]: an Al fluorinated MOF of MIL-53(Al) topology with cationic {Zn(1,2,4 triazole)}2+ linkers , 2011 .

[7]  C. Serre,et al.  Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) , 2011 .

[8]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[9]  A. Demourgues,et al.  Microwave Synthesis of an Aluminum Fluoride Hydrate with Cationic Vacancies: Structure, Thermal Stability, and Acidic Properties , 2008 .

[10]  R. Fishman,et al.  Giant negative magnetization in a layered organic magnet. , 2007, Physical review letters.

[11]  Song Gao,et al.  [Fe3(HCOO)6]: A Permanent Porous Diamond Framework Displaying H2/N2 Adsorption, Guest Inclusion, and Guest‐Dependent Magnetism , 2007 .

[12]  Song Gao,et al.  A family of porous magnets, [M3(HCOO)6] (M = Mn, Fe, Co and Ni) , 2007 .

[13]  G. Tang,et al.  Multiple magnetic-pole reversals in the molecular-based mixed-valency ferrimagnet {[N(n-C4H9)4][FeFe(C2O4)3]}n , 2007 .

[14]  S. Ng,,et al.  Cobalt(II) formate hydroxide , 2005 .

[15]  M. Green,et al.  Synthesis and characterization of a porous magnetic diamond framework, Co3(HCOO)6, and its N2 sorption characteristic. , 2005, Inorganic chemistry.

[16]  A. Powell,et al.  Iron(II) Formate [Fe(O2CH)2]·1/3HCO2H: A Mesoporous Magnet − Solvothermal Syntheses and Crystal Structures of the Isomorphous Framework Metal(II) Formates [M(O2CH)2]·n(Solvent) (M = Fe, Co, Ni, Zn, Mg) , 2005 .

[17]  Bin Zhang,et al.  Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. , 2004, Chemical communications.

[18]  P. Day Reply to “Contradicting Reports on Magnetic Properties of Layered Molecule-Based Material N(n-C3H7)4[FeIIFeIII(C2O4)3]” , 2003 .

[19]  A. Demourgues,et al.  Chemistry and key structural features of oxyhydroxy-fluorides : relationships with the acidic character, thermal stability and surface area , 2002 .

[20]  Ivan Škorvánek,et al.  Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy , 2002 .

[21]  J. Kováč,et al.  Structural and magnetic properties of metastable Fe1-xSix (0.15 < x < 0.34) alloys prepared by a rapid-quenching technique , 2002 .

[22]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[23]  L. M. Rodriguez-Martinez,et al.  Electrostatically driven charge-ordering in Fe2OBO3 , 1998, Nature.

[24]  P. Day,et al.  Magnetization of the layer compounds AFeIIFeIII(C2O4)3 (A = organic cation), in low and high magnetic fields : Manifestation of Néel N and Q type ferrimagnetism in a molecular lattice , 1998 .

[25]  J. Greneche,et al.  Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: II. The topography of hyperfine interactions in Fe(Cu)ZrB alloys , 1997 .

[26]  U. Bentrup Über die thermische Entwässerung der Fluoridhydrate FeMIIIF5·7H2O (MIII = Al, Fe, V, Cr) , 1996 .

[27]  J. Greneche,et al.  Mössbauer spectroscopy of the magnetic behaviour of the frustrated series AFeF5(H2O)2:A = Mn, Fe, Co, Ni , 1988 .

[28]  J. Greneche,et al.  Crystal structure of the inverse weberite ZnFeF5(H2O)2, magnetic and mössbauer study of the antiferromagnet ZnFeF5(H2O)2 and ferrimagnet Mn FeF5(H2O)2 , 1986 .

[29]  J. Pannetier,et al.  Ordered magnetic frustration — V. Antiferromagnetic structure of the hexagonal bronzoid HTBFeF3; Comparison with the non frustrated rhombohedral form , 1986 .

[30]  J. Pannetier,et al.  A new refinement of the crystal structure of the inverse weberite Fe2F5(H2O)2 , 1986 .

[31]  F. Varret,et al.  Structural transformation from amorphous to hexagonal tungsten bronze FeF3, studied by Mössabauer spectroscopy , 1984 .

[32]  M. Leblanc,et al.  Idle spin behavior of the shifted hexagonal tungsten bronze type compounds FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2 , 1984 .

[33]  R. Dawson,et al.  Ferrimagnetism in FeCoF5⋅2H2O , 1979 .

[34]  D. Babel,et al.  Die Verfeinerung der Weberitstruktur der Verbindung Na2NiFeF7 , 1978 .

[35]  Y. Macheteau,et al.  Étude par effet Mössbauer de Fe2F5, 2 H2O , 1976 .

[36]  J. Kolis,et al.  An Extended Solid from the Solvothermal Decomposition of Co(Acac)3: Structure and Characterization of Co5(OH)2(O2CCH3)8·2H2O , 1999 .

[37]  G. Toulouse,et al.  The frustration model , 1980 .

[38]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .

[39]  W. J. Haas,et al.  Further measurements of the magnetic properties of some salts of the iron group at low temperatures , 1940 .