Prokaryotic motility structures.

Prokaryotes use a wide variety of structures to facilitate motility. The majority of research to date has focused on swimming motility and the molecular architecture of the bacterial flagellum. While intriguing questions remain, especially concerning the specialized export system involved in flagellum assembly, for the most part the structural components and their location within the flagellum and function are now known. The same cannot be said of the other apparati including archaeal flagella, type IV pili, the junctional pore, ratchet structure and the contractile cytoskeleton used by a variety of organisms for motility. In these cases, many of the structural components have yet to be identified and the mechanism of action that results in motility is often still poorly understood. Research on the bacterial flagellum has greatly aided our understanding of not only motility but also protein secretion and genetic regulation systems. Continued study and understanding of all prokaryotic motility structures will provide a wealth of knowledge that is sure to extend beyond the bounds of prokaryotic movement.

[1]  L. Claret,et al.  Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. , 2002, Journal of molecular biology.

[2]  T. Stanton,et al.  The Spirochete FlaA Periplasmic Flagellar Sheath Protein Impacts Flagellar Helicity , 2000, Journal of bacteriology.

[3]  D G Morgan,et al.  The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. , 2000, Science.

[4]  D. Kaiser,et al.  Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility , 1997, Journal of bacteriology.

[5]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[6]  Wolfgang Baumeister,et al.  The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria , 1998, Current Biology.

[7]  M. Silverman,et al.  Surface‐induced swarmer cell differentiation of Vibrio parahaemoiyticus , 1990, Molecular microbiology.

[8]  R. Macnab,et al.  Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. , 2002, Biochemistry.

[9]  S. Hultgren,et al.  Multiple pathways allow protein secretion across the bacterial outer membrane. , 2000, Current opinion in cell biology.

[10]  M. Homma,et al.  Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources , 1995, Journal of bacteriology.

[11]  R. Macnab,et al.  Structural properties of FliH, an ATPase regulatory component of the Salmonella type III flagellar export apparatus. , 2002, Journal of molecular biology.

[12]  J. Mattick,et al.  Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. , 1997, Gene.

[13]  M. McBride,et al.  Mutations in Flavobacterium johnsoniae gldF and gldG Disrupt Gliding Motility and Interfere with Membrane Localization of GldA , 2002, Journal of bacteriology.

[14]  K. Jarrell,et al.  Identification and Localization of Flagellins FlaA and FlaB3 within Flagella of Methanococcus voltae , 2002, Journal of bacteriology.

[15]  Y. Imae,et al.  Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces , 1992, Nature.

[16]  S. Trachtenberg Mollicutes-wall-less bacteria with internal cytoskeletons. , 1998, Journal of structural biology.

[17]  K. Hughes,et al.  How and when are substrates selected for type III secretion? , 2001, Trends in microbiology.

[18]  D. Kaiser,et al.  Type IV pili and cell motility , 1999, Molecular microbiology.

[19]  S. Trachtenberg,et al.  The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. , 2002, Journal of molecular biology.

[20]  FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. , 2002, FEMS microbiology letters.

[21]  J. Tainer,et al.  Type-4 pilus-structure: outside to inside and top to bottom--a minireview. , 1997, Gene.

[22]  R. Macnab,et al.  The Bacterial Flagellum: Reversible Rotary Propellor and Type III Export Apparatus , 1999, Journal of bacteriology.

[23]  J. Mattick,et al.  A re-examination of twitching motility in Pseudomonas aeruginosa. , 1999, Microbiology.

[24]  W. Shi,et al.  Type IV Pilus-Dependent Motility and Its Possible Role in Bacterial Pathogenesis , 2002, Infection and Immunity.

[25]  S. Trachtenberg,et al.  A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3 , 2001, Molecular microbiology.

[26]  M. Sal,et al.  Spirochete periplasmic flagella and motility. , 2000, Journal of molecular microbiology and biotechnology.

[27]  E. Hoiczyk,et al.  How Myxobacteria Glide , 2002, Current Biology.

[28]  Ann M Stock,et al.  Bright Lights, Abundant Operons—Fluorescence and Genomic Technologies Advance Studies of Bacterial Locomotion and Signal Transduction: Review of the BLAST Meeting, Cuernavaca, Mexico, 14 to 19 January 2001 , 2002, Journal of bacteriology.

[29]  R. DeSalle,et al.  Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. M. Kirov,et al.  Lateral Flagella and Swarming Motility in Aeromonas Species , 2002, Journal of bacteriology.

[31]  R. Macnab,et al.  Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. , 2001, Journal of molecular biology.

[32]  Howard C. Berg,et al.  Direct observation of extension and retraction of type IV pili , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Mattick Type IV pili and twitching motility. , 2002, Annual review of microbiology.

[34]  K. Jarrell,et al.  The archaeal flagellum: a different kind of prokaryotic motility structure. , 2001, FEMS microbiology reviews.

[35]  R. Macnab,et al.  Domain Structure of Salmonella FlhB, a Flagellar Export Component Responsible for Substrate Specificity Switching , 2000, Journal of bacteriology.

[36]  M. Homma,et al.  The sodium‐driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression , 1996, Molecular microbiology.

[37]  J. Rudolph,et al.  Deletion analysis of the che operon in the archaeon Halobacterium salinarium. , 1996, Journal of molecular biology.

[38]  L. McCarter Polar Flagellar Motility of theVibrionaceae , 2001, Microbiology and Molecular Biology Reviews.

[39]  Alfred M. Spormann,et al.  Gliding Motility in Bacteria: Insights from Studies ofMyxococcus xanthus , 1999, Microbiology and Molecular Biology Reviews.

[40]  M. McBride Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. , 2001, Annual review of microbiology.

[41]  S. Aizawa,et al.  Length of the Flagellar Hook and the Capacity of the Type III Export Apparatus , 2001, Science.

[42]  K. Hughes,et al.  Regulation of flagellar assembly. , 2002, Current opinion in microbiology.

[43]  G. Schoolnik,et al.  The Type IV Pilus Assembly Complex: Biogenic Interactions among the Bundle-Forming Pilus Proteins of Enteropathogenic Escherichia coli , 2002, Journal of bacteriology.

[44]  S. Aizawa Flagellar assembly in Salmonella typhimurium , 1996, Molecular microbiology.

[45]  T. Matsuyama,et al.  Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[47]  Putting a lid on it , 2001, Nature Structural Biology.

[48]  R. Macnab,et al.  Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway , 2002, Molecular microbiology.

[49]  J. Bono,et al.  Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.