Programming and Computing in HOL
暂无分享,去创建一个
[1] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[2] Richard J. Boulton,et al. Lazy techniques for fully expansive theorem proving , 1993, Formal Methods Syst. Des..
[3] Pierre Crégut,et al. An abstract machine for Lambda-terms normalization , 1990, LISP and Functional Programming.
[4] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[5] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[6] Samuel Boutin,et al. Using Reflection to Build Efficient and Certified Decision Procedures , 1997, TACS.
[7] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[8] Jan Friso Groote,et al. Proceedings of the International Conference on Typed Lambda Calculi and Applications , 1993 .
[9] Konrad Slind,et al. Function Definition in Higher-Order Logic , 1996, TPHOLs.
[10] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[11] Lawrence C. Paulson,et al. Logic and computation - interactive proof with Cambridge LCF , 1987, Cambridge tracts in theoretical computer science.
[12] Lawrence C. Paulson,et al. A Higher-Order Implementation of Rewriting , 1983, Sci. Comput. Program..
[13] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[14] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .