TRANSIENT LINEAR PRICE IMPACT AND FREDHOLM INTEGRAL EQUATIONS

We consider the linear-impact case in the continuous-time market impact model with transient price impact proposed by Gatheral (2008). In this model, the absence of price manipulation in the sense of Huberman and Stanzl (2004) can easily be characterized by means of Bochner's theorem. This allows us to study the problem of minimizing the expected liquidation costs of an asset position under constraints on the trading times. We prove that optimal strategies can be characterized as measure-valued solutions of a generalized Fredholm integral equation of the first kind and analyze several explicit examples. We also prove theorems on the existence and nonexistence of optimal strategies. We show in particular that optimal strategies always exist and are nonalternating between buy and sell trades when price impact decays as a convex function of time. This is based on and extends a recent result by Alfonsi, Schied, and Slynko (2009) on the nonexistence of transaction-triggered price manipulation. We also prove some qualitative properties of optimal strategies and provide explicit expressions for the optimal strategy in several special cases of interest.

[1]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[2]  T. Carleman Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen , 1922 .

[3]  Alexander Schied,et al.  Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets , 2009, Finance Stochastics.

[4]  Alexander Fadeev,et al.  Optimal execution for portfolio transactions , 2006 .

[5]  J. Bouchaud,et al.  Fluctuations and response in financial markets: the subtle nature of ‘random’ price changes , 2004 .

[6]  Gur Huberman,et al.  Price Manipulation and Quasi-Arbitrage , 2004 .

[7]  W. H. Young On the Fourier Series of Bounded Functions , 1913 .

[8]  J. Bouchaud,et al.  Fluctuations and Response in Financial Markets: The Subtle Nature of 'Random' Price Changes , 2003, cond-mat/0307332.

[9]  Otto Toeplitz,et al.  Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .

[10]  Alexander Schied,et al.  Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem , 2012, SIAM J. Financial Math..

[11]  Robert Almgren,et al.  Optimal execution with nonlinear impact functions and trading-enhanced risk , 2003 .

[12]  Alexander Schied,et al.  Constrained portfolio liquidation in a limit order book model , 2008 .

[13]  J. Bouchaud,et al.  Price Impact , 2009, 0903.2428.

[14]  Alexander Schied,et al.  Optimal Trade Execution and Absence of Price Manipulations in Limit Order Book Models , 2010, SIAM J. Financial Math..

[15]  A. Alfonsi Optimal trade execution and absence of price manipulations in limit order book models , 2010 .

[16]  S. Bochner,et al.  Vorlesungen über Fouriersche Integrale , 1952 .

[17]  U. Neri Distributions and Fourier transforms , 1971 .

[18]  Jim Gatheral No-dynamic-arbitrage and market impact , 2009 .

[19]  H. Cartan,et al.  Théorie du potentiel newtonien : énergie, capacité, suites de potentiels , 1945 .

[20]  Charles-Albert Lehalle,et al.  Rigorous Post-Trade Market Impact Measurement and the Price Formation Process , 2010 .

[21]  Alexander Schied,et al.  Optimal execution strategies in limit order books with general shape functions , 2007, 0708.1756.

[22]  S. Viswanathan,et al.  How to Define Illegal Price Manipulation , 2008 .

[23]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[24]  D. Bertsimas,et al.  Optimal control of execution costs , 1998 .

[25]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[26]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .