Review of Spark Discharge Generators for Production of Nanoparticle Aerosols

In the growing field of nanotechnology there is an increasing need to develop production methods for nanoparticles, especially methods that provide control and reproducibility. The spark discharge generator (SDG) is a versatile device for the production of nanoparticle aerosols. It can produce aerosol nanoparticles in the entire nanometer range (1–100 nm), and beyond. Depending on requirements, and the system used, these nanoparticles can be completely contamination free and composed of one or more materials. This provides a unique opportunity to create new materials on the nanoscale. Already in use in semiconductor, materials, health and environmental research, the SDG shows promise for yet more applications. If needed, particle production by the SDG could be scaled up using parallel generators facilitating continuous high-volume production of aerosol nanoparticles. Still, there is a surprisingly low knowledge of fundamental processes in the SDG. In this article we present a thorough review of the most common and relevant SDGs and the theory of their operation. Some possible improvements are also discussed. Copyright 2012 American Association for Aerosol Research

[1]  T. Svedberg Colloid chemistry , 1928 .

[2]  H. G. Scheibel,et al.  Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm , 1983 .

[3]  J. Kuffel,et al.  High Voltage Engineering: Fundamentals , 1984 .

[4]  E. Garwin,et al.  Aerosol generation by spark discharge , 1988 .

[5]  G. Meesters,et al.  Generation of micron-sized droplets from the Taylor cone , 1992 .

[6]  F. Löffler,et al.  Investigations of a new aerosol generator for the production of carbon aggregate particles , 1993 .

[7]  U. Baltensperger,et al.  In situ characterization and structure modification of agglomerated aerosol particles , 1995 .

[8]  A. Montaser,et al.  Direct solid sampling of fire assay beads by spark ablation inductively coupled plasma mass spectrometry , 1995 .

[9]  R. Reinmann,et al.  Temporal investigation of a fast spark discharge in chemically inert gases , 1997 .

[10]  D Boulaud,et al.  Electrical discharge regimes and aerosol production in point-to-plane DC high-pressure cold plasmas , 1998 .

[11]  J. Va'vra,et al.  Soft X-ray production in spark discharges in hydrogen, nitrogen, air, argon and xenon gases , 1998 .

[12]  Aaron Peled,et al.  Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review , 1998 .

[13]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[14]  G. Kasper,et al.  Aerosol Catalysis on Nickel Nanoparticles , 1999 .

[15]  M. L. Laucks Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[16]  Österreichische Akademie der Wissenschaften,et al.  History of aerosol science , 2000 .

[17]  W. Bennett,et al.  Generation of Radiolabeled "Soot-Like" Ultrafine Aerosols Suitable for Use in Human Inhalation Studies , 2000 .

[18]  R. Niessner,et al.  Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo[a]pyrene: O3 and H2O Adsorption, Benzo[a]pyrene Degradation, and Atmospheric Implications , 2001 .

[19]  Robert Gelein,et al.  EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS , 2002, Journal of toxicology and environmental health. Part A.

[20]  Bin Xia,et al.  Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods , 2002 .

[21]  Michael R. Zachariah,et al.  Energy accumulation in nanoparticle collision and coalescence processes , 2002 .

[22]  H. Horvath,et al.  A low-voltage spark generator for production of carbon particles , 2003 .

[23]  Influence of the gas atmosphere on restructuring and sintering kinetics of nickel and platinum aerosol nanoparticle agglomerates , 2003 .

[24]  O. Popovicheva,et al.  Water adsorption and energetic properties of spark discharge soot: Specific features of hydrophilicity , 2003 .

[25]  H. Horvath,et al.  UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols , 2003 .

[26]  Kikuo Okuyama,et al.  Preparation of nanoparticles via spray route , 2003 .

[27]  M. Schnaiter,et al.  Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene , 2003 .

[28]  R. Niessner,et al.  Carbon mass determinations during the AIDA soot aerosol campaign 1999 , 2003 .

[29]  R. Harrison,et al.  The generation and characterisation of elemental carbon aerosols for human challenge studies , 2003 .

[30]  R. Harrison,et al.  The Generation and Characterization of Metallic and Mixed Element Aerosols for Human Challenge Studies , 2003 .

[31]  Harald Saathoff,et al.  Gasification of a soot aerosol by O3 and NO2: Temperature dependence of the reaction probability , 2004 .

[32]  Shinji Takenaka,et al.  Generation of Ultrafine Particles by Spark Discharging , 2004 .

[33]  Reinhard Niessner,et al.  Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information , 2005 .

[34]  Reinhard Niessner,et al.  Comprehensive kinetic characterization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: Measurement, Langmuir–Hinshelwood, and Arrhenius parameters , 2006 .

[35]  W G Kreyling,et al.  Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles. , 2006, Chemosphere.

[36]  H. Grothe,et al.  A DRIFTS study of the heterogeneous reaction of NO2 with carbonaceous materials at elevated temperature , 2007 .

[37]  K. Dick,et al.  Electrospraying of colloidal nanoparticles for seeding of nanostructure growth , 2007 .

[38]  K. Wittmaack Deriving the mean primary-particle diameter and related quantities from the size distribution and the gravimetric mass of spark generated nanoparticles , 2007 .

[39]  D. Su,et al.  Bulk and surface structural investigations of diesel engine soot and carbon black. , 2007, Physical chemistry chemical physics : PCCP.

[40]  J. Hao,et al.  The compaction of soot particles generated by spark discharge in the propene ozonolysis system , 2008 .

[41]  N. S. Tabrizi,et al.  Synthesis of mixed metallic nanoparticles by spark discharge , 2009 .

[42]  Jae Hong Park,et al.  Spark generation of monometallic and bimetallic aerosol nanoparticles , 2008 .

[43]  U. Lafont,et al.  Generation of nanoparticles by spark discharge , 2009 .

[44]  C. Fadley X-ray photoelectron spectroscopy : From origins to future directions , 2009 .

[45]  J. Cole,et al.  Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge , 2009 .

[46]  K. Dick,et al.  Generation of size-selected gold nanoparticles by spark discharge — for growth of epitaxial nanowires , 2009 .

[47]  A. Schmidt-ott,et al.  Generation of mixed metallic nanoparticles from immiscible metals by spark discharge , 2010 .

[48]  J. Gustafson,et al.  Generation of Pd Model Catalyst Nanoparticles by Spark Discharge , 2010 .

[49]  Yegor A. Bugayev,et al.  Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics. , 2010, Micron.

[50]  F. Gensdarmes,et al.  Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator , 2010 .

[51]  M. Messing Engineered Nanoparticles Generation, Characterization and Applications , 2011 .

[52]  W. Kreyling,et al.  Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies , 2011 .

[53]  P. Pikhitsa,et al.  Three-dimensional assembly of nanoparticles from charged aerosols. , 2011, Nano letters.

[54]  Mansoo Choi,et al.  A study of pin-to-plate type spark discharge generator for producing unagglomerated nanoaerosols , 2012 .