Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties.

We show how light forces can be used to trap gold nanoaggregates of selected structure and optical properties obtained by laser ablation in liquid. We measure the optical trapping forces on nanoaggregates with an average size range 20-750 nm, revealing how the plasmon-enhanced fields play a crucial role in the trapping of metal clusters featuring different extinction properties. Force constants of the order of 10 pN/nmW are detected, the highest measured on a metal nanostructure. Finally, by extending the transition matrix formalism of light scattering theory to the optical trapping of metal nanoaggregates, we show how the plasmon resonances and the fractal structure arising from aggregation are responsible for the increased forces and wider trapping size range with respect to individual metal nanoparticles.

[1]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[2]  R. Wannemacher,et al.  Failure of local Mie theory: optical spectra of colloidal aggregates , 2001 .

[3]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[4]  H. Girault,et al.  Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation , 1999 .

[5]  H. Stark,et al.  Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres. , 2006, Physical review letters.

[6]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[7]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[8]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[9]  B. Chichkov,et al.  Influence of Water Temperature on the Hydrodynamic Diameter of Gold Nanoparticles from Laser Ablation , 2010 .

[10]  Adam M. Schwartzberg,et al.  Optical trapping and light-induced agglomeration of gold nanoparticle aggregates , 2006 .

[11]  S. Broersma Viscous force and torque constants for a cylinder , 1981 .

[12]  M. Meneghetti,et al.  Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[13]  Wei Hsuan Hung,et al.  Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates , 2010, Nanotechnology.

[14]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[15]  D. Grier A revolution in optical manipulation , 2003, Nature.

[16]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[17]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[18]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[19]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[20]  M. Meneghetti,et al.  Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation , 2007 .

[21]  Philip H. Jones,et al.  Optical trapping of carbon nanotubes , 2008 .

[22]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[23]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[24]  George C Schatz,et al.  Structures of DNA-linked nanoparticle aggregates. , 2006, The journal of physical chemistry. B.

[25]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[26]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[27]  Yoshihiro Takeda,et al.  Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control , 2002 .

[28]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[29]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[30]  Kishan Dholakia,et al.  Optical vortex trap for resonant confinement of metal nanoparticles. , 2008, Optics express.

[31]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  J. Creighton,et al.  Plasma resonance — enhanced raman scattering by absorbates on gold colloids: The effects of aggregation , 1982 .

[34]  Ying Wang,et al.  Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites. , 2005, Nano letters.

[35]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[36]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[37]  V. Nicolosi,et al.  Spectroscopic evidence of a core-shell structure in the earlier formation stages of Au-Ag nanoparticles by pulsed laser ablation in water , 2008 .

[38]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[39]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[40]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[41]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[42]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[44]  R. Ruppin,et al.  Optical properties of small metal spheres , 1975 .

[45]  G. Yang,et al.  Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals , 2007 .

[46]  N. Scherer,et al.  All-optical patterning of Au nanoparticles on surfaces using optical traps. , 2010, Nano letters.

[47]  J. Fédéli,et al.  Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces. , 2007, Optics express.

[48]  H. Cui,et al.  From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. , 2010, Physical chemistry chemical physics : PCCP.

[49]  P. Denti,et al.  Optical trapping of nonspherical particles in the T-matrix formalism. , 2007, Optics express.

[50]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[51]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[52]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles , 2003 .

[53]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[54]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[55]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[56]  O. M. Maragò,et al.  Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy , 2010 .

[57]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[58]  J. Lindhard,et al.  ON THE PROPERTIES OF A GAS OF CHARGED PARTICLES , 1954 .

[59]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[60]  L. Oddershede,et al.  Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. , 2010, ACS nano.

[61]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[62]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.