Parallel Miocene dispersal events explain the cosmopolitan distribution of the Hypogymnioid lichens
暂无分享,去创建一个
H. Lumbsch | S. Leavitt | A. Crespo | P. Divakar | B. McCune | C. G. Boluda | Xin Wei | P. Cubas | S. Tchabanenko
[1] Richard H. Ree,et al. Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection , 2018 .
[2] R. Lücking,et al. Parallel Miocene‐dominated diversification of the lichen‐forming fungal genus Oropogon (Ascomycota: Parmeliaceae) in different continents , 2017 .
[3] H. Lumbsch,et al. Understanding disjunct distribution patterns in lichen-forming fungi: insights from Parmelina (Parmeliaceae: Ascomycota) , 2017 .
[4] J. Rikkinen,et al. Diversity and ecological adaptations in Palaeogene lichens , 2017, Nature Plants.
[5] H. Lumbsch,et al. Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi , 2017, Fungal Diversity.
[6] C. J. Harper. Fossil Fungi , 2016, Ameghiniana.
[7] M. Grube,et al. Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. , 2015, The New phytologist.
[8] R. Lücking,et al. A Tale of Two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi , 2015, Scientific Reports.
[9] Alexandre Antonelli,et al. A network approach for identifying and delimiting biogeographical regions , 2014, Nature Communications.
[10] Katalin Molnár,et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. , 2014, Molecular phylogenetics and evolution.
[11] R. Lücking,et al. A single macrolichen constitutes hundreds of unrecognized species , 2014, Proceedings of the National Academy of Sciences.
[12] Dong Xie,et al. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..
[13] B. McCune,et al. The lichen genus Hypogymnia in southwest China , 2014 .
[14] Alexandros Stamatakis,et al. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..
[15] Michael J. Landis,et al. Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.
[16] J. Vondrák,et al. Local representation of global diversity in a cosmopolitan lichen‐forming fungal species complex (Rhizoplaca, Ascomycota) , 2013 .
[17] C. Printzen,et al. Pleistocene expansion of the bipolar lichen Cetraria aculeata into the Southern hemisphere , 2013, Molecular ecology.
[18] H. Lumbsch,et al. A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. , 2012 .
[19] H. Lumbsch,et al. Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. , 2012, American journal of botany.
[20] H. Lumbsch,et al. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions , 2012, BMC Evolutionary Biology.
[21] P. Divakar,et al. Hypogymnia in the Himalayas of India and Nepal , 2012, The Lichenologist.
[22] H. Lumbsch,et al. Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota) , 2012, PloS one.
[23] R. Lanfear,et al. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.
[24] Fredrik Ronquist,et al. Phylogenetic Methods in Biogeography , 2011 .
[25] A. Elvebakk. A review of the genus Hypogymnia (Parmeliaceae) in Chile , 2011 .
[26] F. Lutzoni,et al. Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure , 2011 .
[27] Mark A. Miller,et al. Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).
[28] I. Martínez,et al. Phylogeography and Divergence Date Estimates of a Lichen Species Complex with a Disjunct Distribution Pattern 1 , 2022 .
[29] S. Renner,et al. A fossil‐calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America , 2009 .
[30] J. Wen,et al. Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants , 2009 .
[31] J. Fankhauser,et al. New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.
[32] S. Ho,et al. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.
[33] R. Ree,et al. Prospects and challenges for parametric models in historical biogeographical inference , 2009 .
[34] A. Clarke. Antarctic marine benthic diversity: patterns and processes , 2008 .
[35] H. Lumbsch,et al. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. , 2008, Mycological research.
[36] Richard H. Ree,et al. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.
[37] H. Lumbsch,et al. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. , 2007, Molecular phylogenetics and evolution.
[38] J. Elix,et al. The New Zealand lichen Pannaria leproloma (Nyl.) P. M. Jørg. and its panaustral relative P. farinosa nom. nov. , 2007, The Lichenologist.
[39] V. Mosbrugger,et al. Cenozoic continental climatic evolution of Central Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[40] J. Tate,et al. The biogeography of Hoffmannseggia (Leguminosae, Caesalpinioideae, Caesalpinieae): a tale of many travels , 2004 .
[41] M. Donoghue,et al. Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.
[42] D. Hibbett,et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.
[43] F. Ronquist,et al. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. , 2004, Systematic biology.
[44] J. Bjerke. Menegazzia subsimilis, a widespread sorediate lichen , 2003, The Lichenologist.
[45] B. McCune,et al. Five New Species of Hypogymnia with Rimmed Holes from the Chinese Himalayas , 2003 .
[46] S. Stenroos,et al. Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). , 2003, Molecular phylogenetics and evolution.
[47] Hirohisa Kishino,et al. Divergence time and evolutionary rate estimation with multilocus data. , 2002, Systematic biology.
[48] G. Rambold,et al. Phacopsis — A lichenicolous genus of the family Parmeliaceae , 2002, Mycological Progress.
[49] J. Hunziker,et al. Molecular phylogeny of Larrea and its allies (Zygophyllaceae): reticulate evolution and the probable time of creosote bush arrival to North America. , 2001, Molecular phylogenetics and evolution.
[50] M. Donoghue,et al. Phylogenetic Patterns in Northern Hemisphere Plant Geography , 2001, International Journal of Plant Sciences.
[51] K. Crandall,et al. Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.
[52] L. Sloan,et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.
[53] J. Zachos,et al. Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.
[54] Pagani,et al. Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses , 1999, Science.
[55] G. Ramstein,et al. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years , 1997, Nature.
[56] Fredrik Ronquist,et al. Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .
[57] Juan J. Morrone,et al. HISTORICAL BIOGEOGRAPHY: Introduction to Methods , 1995 .
[58] J. Oliver,et al. The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.
[59] Hale MEJr. Arctoparmelia, a new genus in the Parmeliaceae (Ascomycotina). , 1986 .
[60] T. Goward. Brodoa, a New Lichen Genus in the Parmeliaceae , 1986 .
[61] D. Hawksworth. Two new species of Hypogymnia (NYL.)NYL , 1973, The Lichenologist.
[62] M. E. Hale. A Synopsis of the Lichen Genus Pseudevernia , 1968 .
[63] Kazutaka Katoh,et al. Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.
[64] C. Gries,et al. Lichen Flora of the Greater Sonoran Desert Region , 2001 .
[65] J. Elix. A taxonomic revision of the Lichen genus Hypogymnia in Australasia. , 1979 .
[66] W. L. Culberson. Disjunctive Distributions in the Lichen-Forming Fungi , 1972 .
[67] G. Bitter. Zur Morphologie und Systematik von Parmelia, Untergattung Hypogymnia , 1901 .