Parallel Miocene dispersal events explain the cosmopolitan distribution of the Hypogymnioid lichens

Contemporary species’ distributions are shaped by both geography and historical events, such as extinction, diversification in specific areas and long‐distance dispersals. In the most diverse family of lichen‐forming fungi, Parmeliaceae, the Hypogymnioid clade, is an example of an evolutionary lineage comprised of species occurring in temperate to subpolar regions in both hemispheres. Here, we elucidate the timing of diversification events and the impact of historical events on the species distribution in this lineage.

[1]  Richard H. Ree,et al.  Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection , 2018 .

[2]  R. Lücking,et al.  Parallel Miocene‐dominated diversification of the lichen‐forming fungal genus Oropogon (Ascomycota: Parmeliaceae) in different continents , 2017 .

[3]  H. Lumbsch,et al.  Understanding disjunct distribution patterns in lichen-forming fungi: insights from Parmelina (Parmeliaceae: Ascomycota) , 2017 .

[4]  J. Rikkinen,et al.  Diversity and ecological adaptations in Palaeogene lichens , 2017, Nature Plants.

[5]  H. Lumbsch,et al.  Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi , 2017, Fungal Diversity.

[6]  C. J. Harper Fossil Fungi , 2016, Ameghiniana.

[7]  M. Grube,et al.  Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. , 2015, The New phytologist.

[8]  R. Lücking,et al.  A Tale of Two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi , 2015, Scientific Reports.

[9]  Alexandre Antonelli,et al.  A network approach for identifying and delimiting biogeographical regions , 2014, Nature Communications.

[10]  Katalin Molnár,et al.  A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. , 2014, Molecular phylogenetics and evolution.

[11]  R. Lücking,et al.  A single macrolichen constitutes hundreds of unrecognized species , 2014, Proceedings of the National Academy of Sciences.

[12]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[13]  B. McCune,et al.  The lichen genus Hypogymnia in southwest China , 2014 .

[14]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[15]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[16]  J. Vondrák,et al.  Local representation of global diversity in a cosmopolitan lichen‐forming fungal species complex (Rhizoplaca, Ascomycota) , 2013 .

[17]  C. Printzen,et al.  Pleistocene expansion of the bipolar lichen Cetraria aculeata into the Southern hemisphere , 2013, Molecular ecology.

[18]  H. Lumbsch,et al.  A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. , 2012 .

[19]  H. Lumbsch,et al.  Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. , 2012, American journal of botany.

[20]  H. Lumbsch,et al.  Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions , 2012, BMC Evolutionary Biology.

[21]  P. Divakar,et al.  Hypogymnia in the Himalayas of India and Nepal , 2012, The Lichenologist.

[22]  H. Lumbsch,et al.  Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota) , 2012, PloS one.

[23]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[24]  Fredrik Ronquist,et al.  Phylogenetic Methods in Biogeography , 2011 .

[25]  A. Elvebakk A review of the genus Hypogymnia (Parmeliaceae) in Chile , 2011 .

[26]  F. Lutzoni,et al.  Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure , 2011 .

[27]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[28]  I. Martínez,et al.  Phylogeography and Divergence Date Estimates of a Lichen Species Complex with a Disjunct Distribution Pattern 1 , 2022 .

[29]  S. Renner,et al.  A fossil‐calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America , 2009 .

[30]  J. Wen,et al.  Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants , 2009 .

[31]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[32]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[33]  R. Ree,et al.  Prospects and challenges for parametric models in historical biogeographical inference , 2009 .

[34]  A. Clarke Antarctic marine benthic diversity: patterns and processes , 2008 .

[35]  H. Lumbsch,et al.  The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. , 2008, Mycological research.

[36]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[37]  H. Lumbsch,et al.  Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. , 2007, Molecular phylogenetics and evolution.

[38]  J. Elix,et al.  The New Zealand lichen Pannaria leproloma (Nyl.) P. M. Jørg. and its panaustral relative P. farinosa nom. nov. , 2007, The Lichenologist.

[39]  V. Mosbrugger,et al.  Cenozoic continental climatic evolution of Central Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Tate,et al.  The biogeography of Hoffmannseggia (Leguminosae, Caesalpinioideae, Caesalpinieae): a tale of many travels , 2004 .

[41]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[42]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[43]  F. Ronquist,et al.  Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. , 2004, Systematic biology.

[44]  J. Bjerke Menegazzia subsimilis, a widespread sorediate lichen , 2003, The Lichenologist.

[45]  B. McCune,et al.  Five New Species of Hypogymnia with Rimmed Holes from the Chinese Himalayas , 2003 .

[46]  S. Stenroos,et al.  Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). , 2003, Molecular phylogenetics and evolution.

[47]  Hirohisa Kishino,et al.  Divergence time and evolutionary rate estimation with multilocus data. , 2002, Systematic biology.

[48]  G. Rambold,et al.  Phacopsis — A lichenicolous genus of the family Parmeliaceae , 2002, Mycological Progress.

[49]  J. Hunziker,et al.  Molecular phylogeny of Larrea and its allies (Zygophyllaceae): reticulate evolution and the probable time of creosote bush arrival to North America. , 2001, Molecular phylogenetics and evolution.

[50]  M. Donoghue,et al.  Phylogenetic Patterns in Northern Hemisphere Plant Geography , 2001, International Journal of Plant Sciences.

[51]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[52]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[53]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[54]  Pagani,et al.  Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses , 1999, Science.

[55]  G. Ramstein,et al.  Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years , 1997, Nature.

[56]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[57]  Juan J. Morrone,et al.  HISTORICAL BIOGEOGRAPHY: Introduction to Methods , 1995 .

[58]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[59]  Hale MEJr Arctoparmelia, a new genus in the Parmeliaceae (Ascomycotina). , 1986 .

[60]  T. Goward Brodoa, a New Lichen Genus in the Parmeliaceae , 1986 .

[61]  D. Hawksworth Two new species of Hypogymnia (NYL.)NYL , 1973, The Lichenologist.

[62]  M. E. Hale A Synopsis of the Lichen Genus Pseudevernia , 1968 .

[63]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[64]  C. Gries,et al.  Lichen Flora of the Greater Sonoran Desert Region , 2001 .

[65]  J. Elix A taxonomic revision of the Lichen genus Hypogymnia in Australasia. , 1979 .

[66]  W. L. Culberson Disjunctive Distributions in the Lichen-Forming Fungi , 1972 .

[67]  G. Bitter Zur Morphologie und Systematik von Parmelia, Untergattung Hypogymnia , 1901 .