Dynamic load modeling for small disturbances using measurement-based parameter estimation method

Load modeling is an important task in power system stability analysis and control. Taking this into account, in this paper an improved particle swarm optimization (PSO) is applied to obtain dynamic load models based on the measurement approach. To achieve this, a measurement-based parameter estimation method is used for identification of the exponential recovery load model. Measurements are obtained performing dynamic simulation of an IEEE 14-bus test system under several disturbances, and the response of the obtained models is validated using different data sets. An adequate load modeling improves the comprehension of load behavior and the capability of reproducing transient events on power systems.

[1]  Lei Wang,et al.  Practical issues in load modeling for voltage stability studies , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[2]  C. W. Taylor,et al.  Standard load models for power flow and dynamic performance simulation , 1995 .

[3]  Takashi Hiyama,et al.  Artificial neural network based dynamic load modeling , 1997 .

[4]  Mohamed B. Abdelhalim,et al.  Particle Swarm Optimization for HW/SW Partitioning , 2009 .

[5]  J. Mora-Florez,et al.  A methodology for composite load modeling in power systems considering distributed generation , 2012, 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA).

[6]  C. W. Taylor,et al.  Load representation for dynamic performance analysis , 1993 .

[7]  Byoung-Kon Choi,et al.  Measurement-based dynamic load models: derivation, comparison, and validation , 2006, IEEE Transactions on Power Systems.

[8]  Chao-Ming Huang,et al.  A particle swarm optimization to identifying the ARMAX model for short-term load forecasting , 2005 .

[9]  Yunping Chen,et al.  The load modeling and parameters identification for voltage stability analysis , 2002, Proceedings. International Conference on Power System Technology.

[10]  Ines Romero Dynamic Power System Load -Estimation of Parameters from Operational Data , 2005 .

[11]  I. Hiskens Nonlinear dynamic model evaluation from disturbance measurements , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[12]  D. Hill,et al.  Modelling and identification of nonlinear dynamic loads in power systems , 1994 .

[13]  Bijaya Ketan Panigrahi,et al.  Adaptive particle swarm optimization approach for static and dynamic economic load dispatch , 2008 .

[14]  Manuel Gómez González Sistema de generación eléctrica con pila de combustible de óxido sólido alimentado con residuos forestales y su optimización mediante algoritmos basados en nubes de partículas , 2011 .

[15]  H. Yoshida,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 1999, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[16]  S. Ihara,et al.  Load Representation in Power System Stability Studies , 1982, IEEE Transactions on Power Apparatus and Systems.

[17]  Max E. Valentinuzzi Handbook of bioinspired algorithms and applications , 2006, BioMedical Engineering OnLine.

[18]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[19]  V. Ajjarapu,et al.  A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling , 2009, IEEE Transactions on Power Systems.

[20]  C.A. Canizares,et al.  On the parameter estimation and modeling of aggregate power system loads , 2004, IEEE Transactions on Power Systems.

[21]  Ping Ju,et al.  Nonlinear dynamic load modelling: model and parameter estimation , 1996 .