An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated titania

[1]  M. Swaminathan,et al.  Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2. , 2009, Journal of hazardous materials.

[2]  M. Swaminathan,et al.  Energy-efficient regeneration of ketones from oximes using semiconductor photocatalysts , 2009 .

[3]  Wei Zhang,et al.  Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives , 2008 .

[4]  Rui Wang,et al.  Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water , 2008 .

[5]  P. Gogoi,et al.  Efficient and Green Method for the Synthesis of 1,5‐Benzodiazepine and Quinoxaline Derivatives in Water , 2007 .

[6]  M. Heravi,et al.  Zn[(l)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature , 2007 .

[7]  M. Swaminathan,et al.  A Green Chemical Synthesis of 2-Alkylbenzimidazoles from 1,2-Phenylenediamine and Propylene Glycol, or Alcohols Mediated by Ag-TiO2/Clay Composite Photocatalyst , 2007 .

[8]  F. Bamoharram,et al.  Wells-Dawson Type Heteropolyacid Catalyzed Synthesis of Quinoxaline Derivatives at Room Temperature , 2007 .

[9]  S. Palaniappan,et al.  Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives , 2007 .

[10]  H. R. Darabi,et al.  A RECYCLABLE AND HIGHLY EFFECTIVE SULFAMIC ACID/MEOH CATALYTIC SYSTEM FOR THE SYNTHESIS OF QUINOXALINES AT ROOM TEMPERATURE , 2007 .

[11]  M. Heravi,et al.  On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 · 5H2O , 2007 .

[12]  C. Yao,et al.  Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines , 2006 .

[13]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[14]  C. Yao,et al.  Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines , 2005 .

[15]  C. Guy,et al.  Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25) , 2005 .

[16]  D. J. Brown Quinoxalines, Supplement II , 2004 .

[17]  Yong Hae Kim,et al.  Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. , 2004, Bioorganic & medicinal chemistry letters.

[18]  M. Myers,et al.  Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor. , 2003, Bioorganic & medicinal chemistry letters.

[19]  S. K. Samantaray,et al.  Effect of anions on the textural and catalytic activity of titania , 2003 .

[20]  Alan R. Katritzky,et al.  Comprehensive Heterocyclic Chemistry IV , 1996 .

[21]  Shigeyasu Kuroda,et al.  Synthesis and Properties of Diamino-Substituted Dipyrido [3,2-a: 2′,3′-c]phenazine , 1992 .

[22]  K. Makino,et al.  Regent progress in the quinoxaline chemistry. Synthesis and biological activity , 1988 .

[23]  L. A. Summers,et al.  Derivatives of 1,10-Phenanthroline-5,6-quinone , 1970 .

[24]  G. M. Badger,et al.  The chemistry of heterocyclic compounds , 1961 .