On the importance of using exact pairing in the study of pygmy dipole resonance

The strength functions of giant dipole resonance (GDR) in oxygen 18−24 O, calcium 50−60 Ca, and tin 120−130 Sn isotopes are calculated within the phonon damping model under three approximations: without superfluid pairing, including BCS pairing, and exact pairing gaps. The analysis of the numerical results shows that exact pairing decreases the two-neutron separation energy in light nuclei, but increases it in heavy nuclei as compared to that obtained within the BCS theory. In neutron-rich medium and heavy nuclei, exact pairing significantly enhances the strength located at the low-energy tail of the GDR, which is usually associated with the pygmy dipole resonance. The line shape of the GDR changes significantly with increasing the neutron number within an isotopic chain if the model parameter is kept fixed at the value determined for the stable isotope.

[1]  H. Lenske,et al.  Investigations of Skin Nuclei in a Density Functional Approach , 2012 .

[2]  A. Sushkov,et al.  Low-energy nuclear spectroscopy in a microscopic multiphonon approach , 2012 .

[3]  M. Andrés,et al.  Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields , 2011 .

[4]  M. Grasso,et al.  Low-lying dipole response in the stable 40 , 48 Ca nuclei with the second random-phase approximation , 2011, 1107.4593.

[5]  U. Tsukuba,et al.  Emergence of pygmy dipole resonances: Magic numbers and neutron skins , 2011, 1106.3618.

[6]  A. Bracco,et al.  The pygmy dipole resonance in 68 Ni and the neutron skin , 2011 .

[7]  J. Terasaki,et al.  Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass , 2010 .

[8]  Yukio Hashimoto,et al.  Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations , 2010, 1007.0785.

[9]  N. D. Dang,et al.  Exact and approximate ensemble treatments of thermal pairing in a multilevel model , 2009, 0905.2002.

[10]  N. D. Dang,et al.  Erratum: Self-consistent quasiparticle random-phase approximation for a multilevel pairing model [Phys. Rev. C 76, 054302 (2007)] , 2008 .

[11]  N. D. Dang,et al.  Self-consistent quasiparticle RPA for multi-level pairing model , 2007, 0710.0935.

[12]  T. Kubo,et al.  Search for low lying dipole strength in the neutron rich nucleus 26Ne , 2007, 0705.1753.

[13]  P. Ring,et al.  Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances , 2007, nucl-th/0701046.

[14]  P. Ring,et al.  Lowest lying 2{sup +} and 3{sup -} vibrational states in Pb, Sn, and Ni isotopes in relativistic quasiparticle random-phase approximation , 2006 .

[15]  J. Terasaki,et al.  Self-consistent description of multipole strength : Systematic calculations , 2006, nucl-th/0603062.

[16]  T. Aumann Reactions with fast radioactive beams of neutron-rich nuclei , 2005 .

[17]  P. Ring,et al.  Isotopic dependence of the pygmy dipole resonance , 2004, nucl-th/0404055.

[18]  P. Bortignon,et al.  Dipole states in stable and unstable nuclei , 2004, nucl-th/0406076.

[19]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[20]  A. Arima,et al.  Pairing effect on the giant dipole resonance width at low temperature , 2003, nucl-th/0309010.

[21]  B. A. Brown,et al.  Low-lying dipole strength in 20O , 2002 .

[22]  J. Stroth,et al.  Photoneutron cross sections for unstable neutron-rich oxygen isotopes. , 2001, Physical review letters.

[23]  Toshio Suzuki,et al.  Pygmy and giant dipole resonances in neutron-rich nuclei within the quasiparticle representation of the phonon damping model , 2001 .

[24]  P. Ring,et al.  Collectivity of the low-lying dipole strength in relativistic random phase approximation , 2001, nucl-th/0101063.

[25]  B. A. Brown,et al.  Exact solution of the nuclear pairing problem , 2000, nucl-th/0011079.

[26]  Toshio Suzuki,et al.  Giant dipole resonance in neutron-rich nuclei within the phonon damping model , 2000 .

[27]  H. Sagawa,et al.  Pigmy and giant dipole states in oxygen isotopes , 1999 .

[28]  A. Arima,et al.  Temperature dependence of quantal and thermal dampings of the hot giant dipole resonance , 1998 .

[29]  A. Arima,et al.  QUANTAL AND THERMAL DAMPINGS OF GIANT DIPOLE RESONANCES IN 90ZR, 120SN, AND 208PB , 1998 .

[30]  Chambers,et al.  Pygmy dipole resonances in the calcium isotopes. , 1994, Physical review. C, Nuclear physics.

[31]  Witold Nazarewicz,et al.  Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed woods-saxon potential with applications to the two-centre-type nuclear problems , 1987 .

[32]  M. Kröning,et al.  Total nuclear photon absorption cross sections for some light elements , 1975 .

[33]  B. L. Berman,et al.  Measurements of the giant dipole resonance with monoenergetic photons , 1975 .

[34]  G. Breit,et al.  Nuclear Structure, Vol. 1 , 1970 .