Multivariate skewing mechanisms: A unified perspective based on the transformation approach

[1]  David C. Hoaglin,et al.  Summarizing Shape Numerically: The g‐and‐h Distributions , 2011 .

[2]  Christophe Ley,et al.  On the singularity of multivariate skew-symmetric models , 2010, J. Multivar. Anal..

[3]  M. C. Jones,et al.  Sinh-arcsinh distributions , 2009 .

[4]  Christophe Ley,et al.  Le Cam optimal tests for symmetry against Ferreira and Steel's general skewed distributions , 2009 .

[5]  M. Steel,et al.  A new class of skewed multivariate distributions with applications to regression analysis , 2007 .

[6]  A note on rescalings, reparametrizations and classes of distributions , 2006 .

[7]  Marc G. Genton,et al.  The Multivariate g-and-h Distribution , 2006, Technometrics.

[8]  A. Azzalini The Skew‐normal Distribution and Related Multivariate Families * , 2005 .

[9]  M. Genton,et al.  Generalized skew-elliptical distributions and their quadratic forms , 2005 .

[10]  M. Steel,et al.  A Constructive Representation of Univariate Skewed Distributions , 2006 .

[11]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[12]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[13]  M. Genton,et al.  A SKEW-SYMMETRIC REPRESENTATION OF MULTIVARIATE DISTRIBUTIONS , 2002 .

[14]  Alexander J. McNeil Statistical Modeling With Quantile Functions , 2001 .

[15]  W. Gilchrist,et al.  Statistical Modelling with Quantile Functions , 2000 .

[16]  G. S. Mudholkar,et al.  The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .

[17]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[18]  F. Mosteller,et al.  Exploring Data Tables, Trends and Shapes. , 1986 .

[19]  A. Azzalini A class of distributions which includes the normal ones , 1985 .