Rapid prototyping and tooling techniques: a review of applications for rapid investment casting

Investment casting (IC) has benefited numerous industries as an economical means for mass producing quality near net shape metal parts with high geometric complexity and acceptable tolerances. The economic benefits of IC are limited to mass production. The high costs and long lead-time associated with the development of hard tooling for wax pattern moulding renders IC uneconomical for low-volume production. The outstanding manufacturing capabilities of rapid prototyping (RP) and rapid tooling (RT) technologies (RP&T) are exploited to provide cost-effective solutions for low-volume IC runs. RP parts substitute traditional wax patterns for IC or serve as production moulds for wax injection moulding. This paper reviews the application and potential application of state-of-the-art RP&T techniques in IC. The techniques are examined by introducing their concepts, strengths and weaknesses. Related research carried out worldwide by different organisations and academic institutions are discussed.

[1]  R. Hovtun,et al.  Conversion of RP models to investment castings , 1995 .

[2]  Paul Jacobs,et al.  Stereolithography 1993: epoxy resins, improved accuracy, and investment casting , 1994, Other Conferences.

[3]  David L. Bourell,et al.  Selective laser sintering of metals and ceramics , 1992 .

[4]  Jean-Pierre Kruth,et al.  Material incress manufacturing by rapid prototyping techniques , 1991 .

[5]  Terry T. Wohlers,et al.  State of the industry : 1999 worldwide progress report : rapid prototyping & tooling , 1999 .

[6]  Rémy Glardon,et al.  Optimization of powder layer density in selective laser sintering , 1999 .

[7]  W. Steen Laser Material Processing , 1991 .

[8]  Tong Mei,et al.  Interface between CAD and Rapid Prototyping systems. Part 1: A study of existing interfaces , 1997 .

[9]  Chee Kai Chua,et al.  A study of stereolithography file errors and repair. Part 1. Generic solution , 1996 .

[10]  D. L. Bourell,et al.  Selective Laser Sintering of Cu-Pb/Sn Solder Powders , 1991 .

[11]  Duc Truong Pham,et al.  The RapidTool process: Technical capabilities and applications , 2000 .

[12]  Nutt Kent Selective Laser Sintering as a Rapid Prototyping and Manufacturing Technique , 1991 .

[13]  Ron Jamieson,et al.  Direct slicing of CAD models for rapid prototyping , 1995 .

[14]  Mikell Knights Rapid tooling is ready for prime time , 2001 .

[15]  Thomas J. Mueller,et al.  Using Rapid Prototyping Techniques to Prototype Metal Castings , 1992 .

[16]  Richard J.M. Hague,et al.  Structural design and resin drainage characteristics of QuickCast 2.0 , 2001 .

[17]  S. Finke,et al.  Extrusion and deposition of semi-solid metals , 2000 .

[18]  J. Kruth,et al.  Powder deposition in selective metal powder sintering , 1995 .

[19]  R. Crawford,et al.  Selective Laser Sintering of metals , 1994 .

[20]  Chee Kai Chua,et al.  Rapid Moulding Using Epoxy Tooling Resin , 2002 .

[21]  Chee Kai Chua,et al.  Rapid tooling technology. Part 2. A case study using arc spray metal tooling , 1999 .

[22]  Y. Yusuf,et al.  Rapid prototyping technology: applications and benefits for rapid product development , 1999, J. Intell. Manuf..

[23]  Z. Ji,et al.  Rapid Freezing Prototyping with Water , 1999 .

[24]  M. Greul,et al.  Rapid prototyping of functional metallic parts , 1995 .

[25]  Detlef Kochan,et al.  Laminated object manufacturing for rapid tooling and patternmaking in foundry industry , 1999 .

[26]  Tong Mei,et al.  Interface between CAD and Rapid Prototyping systems. Part 2: LMI — An improved interface , 1997 .

[27]  Chee Kai Chua,et al.  A study of stereolithography file errors and repair. Part 2. Special cases , 1996 .

[28]  T. Bex,et al.  Rapid prototyping draws widening foundry interest , 1991 .

[29]  K. G. Watkins ACHIEVING THE POTENTIAL OF DIRECT FABRICATION WITH LASERS , 2001 .

[30]  Li Lu,et al.  Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts , 2001 .

[31]  Jerry Y. H. Fuh,et al.  Laser-induced materials and processes for rapid prototyping , 2001 .

[32]  W. L. Yao,et al.  Analysis of Shell Cracking in Investment Casting with Laser Stereolithography Patterns , 1999 .

[33]  Wei Zhang,et al.  Investment Casting with Ice Patterns Made by Rapid Freeze Prototyping 66 , 2000 .

[34]  Kenny Dalgarno,et al.  Production tooling for polymer moulding using the RapidSteel process , 2001 .

[35]  Joseph J. Beaman,et al.  A rapid mould‐making system: material properties and design considerations , 1996 .

[36]  Richard J.M. Hague,et al.  Stresses Created in Ceramic Shells Using Quickcast Models , 1995 .

[37]  Rémy Glardon,et al.  Direct rapid tooling: a review of current research , 1998 .

[38]  Leong Kah Fai,et al.  Rapid Prototyping: Principles and Applications in Manufacturing , 2003 .

[39]  Paul Blake,et al.  FDM of ABS Patterns for Investment Casting , 1997 .

[40]  Paul F. Jacobs,et al.  Stereolithography and Other Rp&m Technologies: From Rapid Prototyping to Rapid Tooling , 1995 .

[41]  S. H. Choi,et al.  A tolerant slicing algorithm for layered manufacturing , 2002 .

[42]  R. Crawford,et al.  Solid Freeform Fabrication: A New Direction in Manufacturing , 1997 .

[43]  Chee Kai Chua,et al.  Rapid tooling technology. Part 1. A comparative study , 1999 .

[44]  Kenneth W. Dalgarno,et al.  Strength of the DTM RapidSteelTM 1.0 material , 1999 .

[45]  Christian Wilkening Fast Production of Technical Prototypes Using Direct Laser Sintering of Metals and Foundry Sand , 1996 .

[46]  Samuel M. Allen,et al.  Progress on Tooling by 3D Printing; Conformal Cooling, Dimensional Control, Surface Finish and Hardness , 1997 .

[47]  Andrzej Rosochowski,et al.  Rapid tooling: the state of the art , 2000 .