Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures

[1]  Qingfeng Li,et al.  High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures , 2014, International Journal of Electrochemical Science.

[2]  Qingfeng Li,et al.  Intermediate Temperature Fuel Cell Using CsH2PO4/ZrO2-Based Composite Electrolytes , 2014 .

[3]  Etsuko Fujita,et al.  Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. , 2013, Chemical communications.

[4]  Jingguang G. Chen,et al.  Monolayer palladium supported on molybdenum and tungsten carbide substrates as low-cost hydrogen evolution reaction (HER) electrocatalysts , 2013 .

[5]  Yimei Zhu,et al.  Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production , 2013 .

[6]  Micheál D. Scanlon,et al.  Low-cost industrially available molybdenum boride and carbide as "platinum-like" catalysts for the hydrogen evolution reaction in biphasic liquid systems. , 2013, Physical chemistry chemical physics : PCCP.

[7]  Angel T. Garcia-Esparza,et al.  Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. , 2013, ChemSusChem.

[8]  H. Vrubel,et al.  Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. , 2012, Angewandte Chemie.

[9]  N. Alexeev,et al.  WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers , 2012 .

[10]  Jingguang G. Chen,et al.  Metal overlayer on metal carbide substrate: unique bimetallic properties for catalysis and electrocatalysis. , 2012, Chemical Society Reviews.

[11]  F. Harnisch,et al.  Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction , 2012 .

[12]  J. Jensen,et al.  Corrosion Behavior of Construction Materials for Intermediate Temperature Steam Electrolysers , 2012 .

[13]  Y. Liu,et al.  Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts , 2012 .

[14]  Robert Schlögl,et al.  Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition , 2012 .

[15]  Keith Scott,et al.  Solid Acids as Electrolyte Materials for Proton Exchange Membrane (PEM) Electrolysis: Review , 2012 .

[16]  Jingguang G. Chen,et al.  Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts , 2012 .

[17]  Jingguang G. Chen,et al.  A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. , 2012, Journal of the American Chemical Society.

[18]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[19]  Ferdi Schüth,et al.  Chemical Compounds for Energy Storage , 2011 .

[20]  Jingguang G. Chen,et al.  Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations , 2011 .

[21]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[22]  U. Stimming,et al.  A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[24]  V. Balzani,et al.  The hydrogen issue. , 2011, ChemSusChem.

[25]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[26]  Irene J. Hsu,et al.  Electrochemical Stability of Tungsten and Tungsten Monocarbide (WC) Over Wide pH and Potential Ranges , 2010 .

[27]  A. Bondarenko,et al.  Screening of electrocatalytic materials for hydrogen evolution. , 2010, Physical chemistry chemical physics : PCCP.

[28]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[29]  N. Gaston,et al.  Hydrogen adsorption on model tungsten carbide surfaces , 2009 .

[30]  Uwe Schröder,et al.  Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions , 2009 .

[31]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[32]  F. Harnisch,et al.  Electrocatalytic and corrosion behaviour of tungsten carbide in near-neutral pH electrolytes , 2009 .

[33]  J. Nørskov,et al.  Ammonia for hydrogen storage: challenges and opportunities , 2008 .

[34]  S. Oyama,et al.  Transition Metal Carbides, Nitrides, and Phosphides , 2008 .

[35]  Jingguang G. Chen,et al.  Tungsten Monocarbide as Potential Replacement of Platinum for Methanol Electrooxidation , 2007 .

[36]  N. Brandon,et al.  Preparation of tungsten carbide-supported nano Platinum catalyst and its electrocatalytic activity for hydrogen evolution , 2007 .

[37]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[38]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[39]  S. Haile,et al.  PAPER www.rsc.org/faraday_d | Faraday Discussions Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes , 2006 .

[40]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[41]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[42]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[43]  Jingguang G. Chen,et al.  Multifunctional Composites Containing Molybdenum Carbides as Potential Electrocatalysts , 2005 .

[44]  S. Haile,et al.  High-Performance Solid Acid Fuel Cells Through Humidity Stabilization , 2004, Science.

[45]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[46]  A. Fanigliulo,et al.  Anodic behaviour of WC‐Co type hardmetal , 2003 .

[47]  P. Patil,et al.  The electrochromic properties of tungsten oxide thin films deposited by solution thermolysis , 2000 .

[48]  L. Bergström,et al.  Oxidation and dissolution of tungsten carbide powder in water , 2000 .

[49]  T. Norby Solid-state protonic conductors: principles, properties, progress and prospects , 1999 .

[50]  A. M. Human,et al.  Electrochemical behaviour of tungsten-carbide hardmetals , 1996 .

[51]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[52]  G. Leclercq,et al.  Study of hydrogen oxidation on carbides , 1991 .

[53]  J. D. Voorhies Electrochemical and Chemical Corrosion of Tungsten Carbide (WC) , 1972 .