Compaction and separation algorithms for non-convex polygons and their applications☆

[1]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[2]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[3]  Thomas Lengauer,et al.  On the Solution of Inequality Systems Relevant to IC-Layout , 1984, J. Algorithms.

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  Leonidas J. Guibas,et al.  A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  Franco P. Preparata,et al.  VLSI Algorithms and Architectures , 1984, MFCS.

[7]  R. J. Schilling,et al.  Decoupling of a Two-Axis Robotic Manipulator Using Nonlinear State Feedback: A Case Study , 1984 .

[8]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[9]  Charles E. Leiserson,et al.  Advanced Research In VLSI , 1986 .

[10]  Alberto Sangiovanni-Vincentelli,et al.  Two-Dimensional Compaction by 'Zone Refining' , 1986, DAC 1986.

[11]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[12]  R. C. Mosteller,et al.  2-D Compaction -- A Monte Carlo Method , 1987 .

[13]  Richard S. Palmer Computational Complexity of Motion and Stability of Polygons , 1987 .

[14]  Paul Losleben,et al.  Advanced Research in VLSI , 1987 .

[15]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[16]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[17]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[18]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[19]  John C. Platt,et al.  Constraints methods for flexible models , 1988, SIGGRAPH.

[20]  Ronen Barzel,et al.  A modeling system based on dynamic constraints , 1988, SIGGRAPH.

[21]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[22]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[23]  Simon Kahan,et al.  An O(n log n) Algorithm for 1-D Tile Compaction , 1989, WG.

[24]  David Baraff,et al.  Analytical methods for dynamic simulation of non-penetrating rigid bodies , 1989, SIGGRAPH.

[25]  David G. Kirkpatrick,et al.  Implicitly Searching Convolutions and Computing Depth of Collision , 1990, SIGAL International Symposium on Algorithms.

[26]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[27]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[28]  Helmut Alt,et al.  Approximate matching of polygonal shapes , 1995, SCG '91.

[29]  David Marple A hierarchy preserving hierarchical compactor , 1991, DAC '90.

[30]  Helmut Alt,et al.  Measuring the resemblance of polygonal curves , 1992, SCG '92.

[31]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[32]  Wei Li Zhang,et al.  Placement and compaction of nonconvex polygons for clothing manufacture , 1992 .

[33]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[34]  Victor J. Milenkovic,et al.  Robust polygon modelling , 1993, Comput. Aided Des..

[35]  Zhenyu Li,et al.  The Complexity of the Compaction Problem , 1993, CCCG.

[36]  Zhenyu Li,et al.  A compaction algorithm for non-convex polygons and its application , 1993, SCG '93.

[37]  Victor J. Milenkovic,et al.  Limited Gaps , 1994, CCCG.

[38]  Zhenyu Li,et al.  Multiple Containment Methods , 1994 .

[39]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .