Incomplete Information Tables and Rough Classification

The rough set theory, based on the original definition of the indiscernibility relation, is not useful for analysing incomplete information tables where some values of attributes are unknown. In this paper we distinguish two different semantics for incomplete information: the “missing value” semantics and the “absent value” semantics. The already known approaches, e.g. based on the tolerance relations, deal with the missing value case. We introduce two generalisations of the rough sets theory to handle these situations. The first generalisation introduces the use of a non symmetric similarity relation in order to formalise the idea of absent value semantics. The second proposal is based on the use of valued tolerance relations. A logical analysis and the computational experiments show that for the valued tolerance approach it is possible to obtain more informative approximations and decision rules than using the approach based on the simple tolerance relation.

[1]  Salvatore Greco,et al.  Rough Set Processing of Vague Information Using Fuzzy Similarity Relations , 2000, Finite Versus Infinite.

[2]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[3]  Khaled Toumi Aide à la décision dans le cadre de la problématique de la description : une approche inductive pour décrire et expliquer , 1996 .

[4]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[5]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[6]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.

[7]  Alexis Tsoukiàs,et al.  Valued Tolerance and Decision Rules , 2000, Rough Sets and Current Trends in Computing.

[8]  Jerzy W. Grzymala-Busse,et al.  On the Unknown Attribute Values in Learning from Examples , 1991, ISMIS.

[9]  Salvatore Greco,et al.  Fuzzy Similarity Relation as a Basis for Rough Approximations , 1998, Rough Sets and Current Trends in Computing.

[10]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[11]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[12]  Salvatore Greco,et al.  Handling Missing Values in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 1999, RSFDGrC.

[13]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[14]  Andrzej Skowron,et al.  Boolean Reasoning for Decision Rules Generation , 1993, ISMIS.

[15]  Leonid Kitainik,et al.  Fuzzy Decision Procedures with Binary Relations , 1993, Theory and Decision Library.

[16]  Jerzy W. Grzymala-Busse,et al.  A Closest Fit Approach to Missing Attribute VAlues in Preterm Birth Data , 1999, RSFDGrC.

[17]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[18]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[19]  D. Vanderpooten Similarity Relation as a Basis for Rough Approximations , 1995 .

[20]  Jerzy Stefanowski,et al.  Rough classification in incomplete information systems , 1989 .

[21]  Jerzy Stefanowski,et al.  On rough set based approaches to induction of decision rules , 1998 .