Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification

[1]  S. Dupont,et al.  Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis , 2014, Journal of Experimental Biology.

[2]  P. Hwang,et al.  Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos , 2013, Frontiers in Zoology.

[3]  B. Seibel,et al.  Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone , 2013, Journal of Experimental Biology.

[4]  H. Onken,et al.  Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals , 2012, Front. Physio..

[5]  Heiko Meyer,et al.  Ammonia excretion in the freshwater planarian Schmidtea mediterranea , 2012, Journal of Experimental Biology.

[6]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[7]  K. Trübenbach,et al.  Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification. , 2012, Aquatic toxicology.

[8]  P. Hwang,et al.  New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[9]  D. Weihrauch,et al.  Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[10]  P. Hwang,et al.  Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[11]  R. Kiko,et al.  Elevated seawater PCO₂ differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[12]  P. Hwang,et al.  Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. , 2011, American journal of physiology. Cell physiology.

[13]  P. Houillier,et al.  The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. , 2011, Kidney international.

[14]  J. Verlander,et al.  Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. , 2010, American journal of physiology. Renal physiology.

[15]  C. Wood,et al.  Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure , 2010, Journal of Experimental Biology.

[16]  F. Melzner,et al.  Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis , 2010 .

[17]  H. Pörtner,et al.  Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia , 2010, Journal of Comparative Physiology B.

[18]  M. Charmantier-Daures,et al.  Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods , 2010, Cell and Tissue Research.

[19]  Shu-chen Wu,et al.  Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. , 2010, American journal of physiology. Cell physiology.

[20]  S. Dupont,et al.  Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? , 2009 .

[21]  C. Wood,et al.  A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins , 2009, Journal of Experimental Biology.

[22]  S. Perry,et al.  Carbonic anhydrase and acid–base regulation in fish , 2009, Journal of Experimental Biology.

[23]  B. Seibel,et al.  Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator , 2008, Proceedings of the National Academy of Sciences.

[24]  H. Pörtner,et al.  Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2 , 2008 .

[25]  S. Watanabe,et al.  Na+/H+ exchanger isoform 3 expressed in apical membrane of gill mitochondrion-rich cells in Mozambique tilapia Oreochromis mossambicus , 2008, Fisheries Science.

[26]  G. Goss,et al.  Regulation of ion transport by pH and [HCO3-] in isolated gills of the crab Neohelice (Chasmagnathus) granulata. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[27]  S. Perry,et al.  Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models , 2006, Respiratory Physiology & Neurobiology.

[28]  G. Goss,et al.  Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion , 2006, Journal of Experimental Biology.

[29]  S. Katsanevakis,et al.  Effect of temperature on specific dynamic action in the common octopus, Octopus vulgaris (Cephalopoda) , 2005 .

[30]  K. Finberg,et al.  Renal vacuolar H+-ATPase. , 2004, Physiological reviews.

[31]  H. Pörtner,et al.  Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History , 2004 .

[32]  R. O'dor Telemetered Cephalopod Energetics: Swimming, Soaring, and Blimping1 , 2002, Integrative and Comparative Biology.

[33]  D. Towle,et al.  Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-ATPase and functional microtubules. , 2002, The Journal of experimental biology.

[34]  D. Evans,et al.  Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na(+)/K(+)-ATPase. , 2001, The Journal of experimental biology.

[35]  G. Charmantier,et al.  Ontogeny of Osmoregulation in Crustaceans: The Embryonic Phase1 , 2001 .

[36]  J. Vermaat,et al.  The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba , 2001 .

[37]  Roger Kerouel,et al.  A simple and precise method for measuring ammonium in marine and freshwater ecosystems , 1999 .

[38]  D. Wallace,et al.  Program developed for CO{sub 2} system calculations , 1998 .

[39]  F. Ismail-Beigi,et al.  Ouabain-sensitive Na+,K(+)-ATPase activity in toad brain. , 1997, Comparative biochemistry and physiology. Part A, Physiology.

[40]  D. M. Webber,et al.  INVERTEBRATE ATHLETES: TRADE-OFFS BETWEEN TRANSPORT EFFICIENCY AND POWER DENSITY IN CEPHALOPOD EVOLUTION , 1991 .

[41]  H. Pörtner,et al.  Acid-base regulation in exercising squid (Illex illecebrosus, Loligo pealei). , 1991, The American journal of physiology.

[42]  M. Lipiński Changes in pH in the caecum of Loligo vulgaris reynaudii during digestion , 1990 .

[43]  H. Pörtner AN ANALYSIS OF THE EFFECTS OF pH ON OXYGEN BINDING BY SQUID (ILLEX ILLECEBROSUS, LOLIGO PEALEI) HAEMOCYANIN , 1990 .

[44]  K. Mangold,et al.  Respiration and nitrogen excretion by the squid Loligo forbesi , 1989 .

[45]  A. Colosimo,et al.  Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution , 1989 .

[46]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[47]  D. M. Webber,et al.  Monitoring the Metabolic Rate and Activity of Free-Swimming squid With Telemetered Jet Pressure , 1986 .

[48]  N. Heisler,et al.  Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. , 1983, The Journal of experimental biology.

[49]  K. Johansen,et al.  A Cephalopod Approach to Rethinking about the Importance of the Bohr and Haldane Effects , 1982 .

[50]  H. Donaubauer Sodium- and potassium-activated adenosine triphosphatase in the excretory organs of Sepia officinalis (Cephalopoda) , 1981 .

[51]  K. Johansen,et al.  The significance of the linkage between the Bohr and Haldane effects in cephalopod bloods. , 1981, Respiration physiology.

[52]  K. Johansen,et al.  Oxygen-linked CO2 binding independent of pH in cephalopod blood , 1980, Nature.

[53]  S. Boletzky,et al.  Electron microscopical and histochemical studies of differentiation and function of the cephalopod gill (Sepia officinalis L.) , 1979, Zoomorphologie.

[54]  J. N. Cameron Effects of hypercapnia on blood acid-base status, NaCl fluxes, and trans-gill potential in freshwater blue crabs,Callinectes sapidus , 1978, Journal of comparative physiology.

[55]  R. Weiss Carbon dioxide in water and seawater: the solubility of a non-ideal gas , 1974 .

[56]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[57]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[58]  A. Schwartz,et al.  Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. , 1969, The Journal of pharmacology and experimental therapeutics.

[59]  W. Potts AMMONIA EXCRETION IN OCTOPUS DOFLEINI. , 1965, Comparative biochemistry and physiology.

[60]  D. Weihrauch,et al.  Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. , 2013, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[61]  S. Perry,et al.  Ionic and acid–base regulation , 2010 .

[62]  S. Perry,et al.  Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias). , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[63]  K. Choe,et al.  The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. , 2005, Physiological reviews.

[64]  D. Gesellschaft Frontiers in zoology , 2004 .

[65]  G. Charmantier,et al.  Ontogeny of Osmoregulation in Crustaceans: The Embryonic Phase1 , 2001 .

[66]  K. Altendorf,et al.  Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. , 1997, The Journal of experimental biology.

[67]  H. Pörtner Coordination of metabolism, acid‐base regulation and haemocyanin function in cephalopods , 1995 .

[68]  H. Pörtner,et al.  A review of ammonia‐mediated buoyancy in squids (cephalopoda: Teuthoidea) , 1994 .

[69]  D. Evans,et al.  Acid-base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia : A role for ammonia excretion , 1992 .

[70]  K. Mangold,et al.  Comparative aspects of Ammonia excretion in cephalopods , 1988 .

[71]  N. Heisler Acid-base regulation in animals , 1986 .

[72]  N. Heisler 6 Acid-Base Regulation in Fishes* , 1984 .