Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases

[1]  J. Ghosh,et al.  Extending the Modified Bayesian Information Criterion (mBIC) to Dense Markers and Multiple Interval Mapping , 2008, Biometrics.

[2]  G. Wahba,et al.  Detecting disease-causing genes by LASSO-Patternsearch algorithm , 2007, BMC proceedings.

[3]  Nengjun Yi,et al.  An Efficient Bayesian Model Selection Approach for Interacting Quantitative Trait Loci Models With Many Effects , 2007, Genetics.

[4]  Andreas Baierl,et al.  Locating Multiple Interacting Quantitative Trait Loci Using Rank-Based Model Selection , 2007, Genetics.

[5]  Nengjun Yi,et al.  Bayesian Mapping of Genomewide Interacting Quantitative Trait Loci for Ordinal Traits , 2007, Genetics.

[6]  O. Carlborg,et al.  A Unified Model for Functional and Statistical Epistasis and Its Application in Quantitative Trait Loci Analysis , 2007, Genetics.

[7]  Shizhong Xu,et al.  Genomewide Analysis of Epistatic Effects for Quantitative Traits in Barley , 2007, Genetics.

[8]  Hao Wu,et al.  R/qtlbim: QTL with Bayesian Interval Mapping in experimental crosses , 2007, Bioinform..

[9]  R W Doerge,et al.  Biased estimators of quantitative trait locus heritability and location in interval mapping , 2005, Heredity.

[10]  S. Elena,et al.  Epistasis and the Adaptability of an RNA Virus , 2005, Genetics.

[11]  Nengjun Yi,et al.  Bayesian Model Selection for Genome-Wide Epistatic Quantitative Trait Loci Analysis , 2005, Genetics.

[12]  Rongling Wu,et al.  Mapping genome-genome epistasis: a high-dimensional model , 2005, Bioinform..

[13]  Shizhong Xu,et al.  Bayesian Shrinkage Estimation of Quantitative Trait Loci Parameters , 2005, Genetics.

[14]  Andrew G. Clark,et al.  Mapping Multiple Quantitative Trait Loci by Bayesian Classification , 2005, Genetics.

[15]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[16]  Z. Zeng,et al.  Modeling Quantitative Trait Loci and Interpretation of Models , 2005, Genetics.

[17]  Y. Ritov,et al.  Persistence in high-dimensional linear predictor selection and the virtue of overparametrization , 2004 .

[18]  Chris S. Haley,et al.  Epistasis: too often neglected in complex trait studies? , 2004, Nature Reviews Genetics.

[19]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[20]  J. Ghosh,et al.  Modifying the Schwarz Bayesian Information Criterion to Locate Multiple Interacting Quantitative Trait Loci , 2004, Genetics.

[21]  Jason H. Moore,et al.  The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common Human Diseases , 2003, Human Heredity.

[22]  K. Broman,et al.  A model selection approach for the identification of quantitative trait loci in experimental crosses , 2002 .

[23]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[24]  Nengjun Yi,et al.  Mapping quantitative trait loci with epistatic effects. , 2002, Genetical research.

[25]  Z. Zeng,et al.  Modeling epistasis of quantitative trait loci using Cockerham's model. , 2002, Genetics.

[26]  J. Cheverud,et al.  AN EPISTATIC GENETIC BASIS FOR FLUCTUATING ASYMMETRY OF MANDIBLE SIZE IN MICE , 2002, Evolution; international journal of organic evolution.

[27]  R. Ball,et al.  Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. , 2001, Genetics.

[28]  R. Felder,et al.  Combinations of variations in multiple genes are associated with hypertension. , 2000, Hypertension.

[29]  A. Wagner Robustness against mutations in genetic networks of yeast , 2000, Nature Genetics.

[30]  Z B Zeng,et al.  Estimating the genetic architecture of quantitative traits. , 1999, Genetical research.

[31]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[32]  M. Wells,et al.  On the construction of Bayes minimax estimators , 1998 .

[33]  Rebecca W. Doerge,et al.  Statistical issues in the search for genes affecting quantitative traits in experimental populations , 1997 .

[34]  C. Kao,et al.  General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. , 1997, Biometrics.

[35]  D. Zamir,et al.  Less-than-additive epistatic interactions of quantitative trait loci in tomato. , 1996, Genetics.

[36]  Z B Zeng,et al.  Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. , 1996, Genetics.

[37]  J. Beauchamp,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[38]  Subir Ghosh,et al.  Statistical Analysis With Missing Data , 1988 .

[39]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[40]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[41]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[42]  H. Jeffreys Some Tests of Significance, Treated by the Theory of Probability , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  G. Mendel,et al.  Mendel's Principles of Heredity , 1910, Nature.

[44]  Trevor Hastie,et al.  Imputing Missing Data for Gene Expression Arrays , 2001 .

[45]  Z B Zeng,et al.  Genetic architecture of a morphological shape difference between two Drosophila species. , 2000, Genetics.

[46]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[47]  S. Tanksley Mapping polygenes. , 1993, Annual review of genetics.

[48]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.

[49]  H. Jeffreys,et al.  Theory of probability , 1939 .