Local search with edge weighting and configuration checking heuristics for minimum vertex cover

The Minimum Vertex Cover (MVC) problem is a well-known combinatorial optimization problem of great importance in theory and applications. In recent years, local search has been shown to be an effective and promising approach to solve hard problems, such as MVC. In this paper, we introduce two new local search algorithms for MVC, called EWLS (Edge Weighting Local Search) and EWCC (Edge Weighting Configuration Checking). The first algorithm EWLS is an iterated local search algorithm that works with a partial vertex cover, and utilizes an edge weighting scheme which updates edge weights when getting stuck in local optima. Nevertheless, EWLS has an instance-dependent parameter. Further, we propose a strategy called Configuration Checking for handling the cycling problem in local search. This is used in designing a more efficient algorithm that has no instance-dependent parameters, which is referred to as EWCC. Unlike previous vertex-based heuristics, the configuration checking strategy considers the induced subgraph configurations when selecting a vertex to add into the current candidate solution. A detailed experimental study is carried out using the well-known DIMACS and BHOSLIB benchmarks. The experimental results conclude that EWLS and EWCC are largely competitive on DIMACS benchmarks, where they outperform other current best heuristic algorithms on most hard instances, and dominate on the hard random BHOSLIB benchmarks. Moreover, EWCC makes a significant improvement over EWLS, while both EWLS and EWCC set a new record on a twenty-year challenge instance. Further, EWCC performs quite well even on structured instances in comparison to the best exact algorithm we know. We also study the run-time behavior of EWLS and EWCC which shows interesting properties of both algorithms.

[1]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[2]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[3]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[4]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[5]  Kaile Su,et al.  EWLS: A New Local Search for Minimum Vertex Cover , 2010, AAAI.

[6]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[7]  Kengo Katayama,et al.  Iterated k-Opt Local Search for the Maximum Clique Problem , 2007, EvoCOP.

[8]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .

[9]  Jean-Charles Régin,et al.  Using Constraint Programming to Solve the Maximum Clique Problem , 2003, CP.

[10]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[11]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[12]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[13]  Mauro Brunato,et al.  Cooperating local search for the maximum clique problem , 2011, J. Heuristics.

[14]  Thomas Stützle,et al.  Towards a Characterisation of the Behaviour of Stochastic Local Search Algorithms for SAT , 1999, Artif. Intell..

[15]  Bart Selman,et al.  Incomplete Algorithms , 2021, Handbook of Satisfiability.

[16]  Stanislav Busygin,et al.  A new trust region technique for the maximum weight clique problem , 2006, Discret. Appl. Math..

[17]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[18]  Jean-Paul Watson,et al.  Linking Search Space Structure, Run-Time Dynamics, and Problem Difficulty: A Step Toward Demystifying Tabu Search , 2004, J. Artif. Intell. Res..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[21]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[22]  Laurent Simon,et al.  Fifty-Five Solvers in Vancouver: The SAT 2004 Competition , 2004, SAT (Selected Papers.

[23]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[24]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[25]  Uriel Feige,et al.  Approximating Maximum Clique by Removing Subgraphs , 2005, SIAM J. Discret. Math..

[26]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[27]  Lakhdar Sais,et al.  Tabu Search for SAT , 1997, AAAI/IAAI.

[29]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[30]  Valmir Carneiro Barbosa,et al.  A Novel Evolutionary Formulation of the Maximum Independent Set Problem , 2003, J. Comb. Optim..

[31]  Federico Della Croce,et al.  Combining Swaps and Node Weights in an Adaptive Greedy Approach for the Maximum Clique Problem , 2004, J. Heuristics.

[32]  Eran Halperin,et al.  Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs , 2000, SODA '00.

[33]  Wayne J. Pullan,et al.  Simple ingredients leading to very efficient heuristics for the maximum clique problem , 2008, J. Heuristics.

[34]  John Thornton,et al.  Clause Weighting Local Search for SAT , 2005, Journal of Automated Reasoning.

[35]  Charu C. Aggarwal,et al.  Optimized Crossover for the Independent Set Problem , 1997, Oper. Res..

[36]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[37]  Wayne Pullan Optimisation of unweighted/weighted maximum independent sets and minimum vertex covers , 2009, Discret. Optim..

[38]  Xing Xu,et al.  A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences , 2004, Bioinform..

[39]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.

[40]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[41]  Malte Helmert,et al.  A Stochastic Local Search Approach to Vertex Cover , 2007, KI.

[42]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[43]  Chu-Min Li,et al.  An Efficient Branch-and-Bound Algorithm Based on MaxSAT for the Maximum Clique Problem , 2010 .

[44]  Wayne J. Pullan,et al.  Phased local search for the maximum clique problem , 2006, J. Comb. Optim..

[45]  George Karakostas,et al.  A better approximation ratio for the vertex cover problem , 2005, TALG.

[46]  Abdul Sattar,et al.  Adaptive Clause Weight Redistribution , 2006, CP.

[47]  Bertrand M. T. Lin,et al.  An Ant Colony Optimization Algorithm for the Minimum Weight Vertex Cover Problem , 2004, Ann. Oper. Res..

[48]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[49]  Diogo Vieira Andrade,et al.  Fast local search for the maximum independent set problem , 2012, J. Heuristics.

[50]  Kengo Katayama,et al.  Solving the maximum clique problem by k-opt local search , 2004, SAC '04.

[51]  Chu Min Li,et al.  Combining Graph Structure Exploitation and Propositional Reasoning for the Maximum Clique Problem , 2010, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence.

[52]  Christine Solnon,et al.  A study of ACO capabilities for solving the maximum clique problem , 2006, J. Heuristics.

[53]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[54]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[55]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[56]  Panos M. Pardalos,et al.  A Heuristic for the Maximum Independent Set Problem Based on Optimization of a Quadratic Over a Sphere , 2002, J. Comb. Optim..

[57]  Roberto Battiti,et al.  Reactive Local Search for the Maximum Clique Problem1 , 2001, Algorithmica.

[58]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[59]  Wayne J. Pullan,et al.  Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..

[60]  G. Crooks,et al.  Protein secondary structure: entropy, correlations and prediction. , 2003, Bioinformatics.

[61]  Mark Dras,et al.  Kernelization as Heuristic Structure for the Vertex Cover Problem , 2006, ANTS Workshop.

[62]  Felip Manyà,et al.  MaxSAT, Hard and Soft Constraints , 2021, Handbook of Satisfiability.

[63]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[64]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[65]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[66]  Torsten Fahle,et al.  Simple and Fast: Improving a Branch-And-Bound Algorithm for Maximum Clique , 2002, ESA.

[67]  Ke Xu,et al.  A Simple Model to Generate Hard Satisfiable Instances , 2005, IJCAI.

[68]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.