Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease

[1]  M. Head,et al.  AI-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2 , 2023, J. Chem. Inf. Model..

[2]  A. Makarov,et al.  Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection. , 2022, Analytical chemistry.

[3]  Arnold N. Tharrington,et al.  Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor , 2022, ACS pharmacology & translational science.

[4]  K. Murakami,et al.  Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay , 2022, Communications Biology.

[5]  W. Gao,et al.  Why 90% of clinical drug development fails and how to improve it? , 2022, Acta pharmaceutica Sinica. B.

[6]  Jenna A. Bilbrey,et al.  Decoding the protein–ligand interactions using parallel graph neural networks , 2021, Scientific Reports.

[7]  Neeraj Kumar,et al.  Artificial Intelligence for Autonomous Molecular Design: A Perspective , 2021, Molecules.

[8]  James B. Brown,et al.  3D-Scaffold: Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds , 2021, bioRxiv.

[9]  Chaok Seok,et al.  MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization , 2021, ACS omega.

[10]  Farren J. Isaacs,et al.  Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency , 2021, ACS medicinal chemistry letters.

[11]  Melissa F. Adasme,et al.  PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA , 2021, Nucleic Acids Res..

[12]  A. Scala,et al.  SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors , 2021, Biomolecules.

[13]  Weinan Zhang,et al.  MARS: Markov Molecular Sampling for Multi-objective Drug Discovery , 2021, ICLR.

[14]  Pierre Ducrot,et al.  Deep generative models for ligand‐based de novo design applied to multi‐parametric optimization , 2021, J. Comput. Chem..

[15]  David S. Goodsell,et al.  RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences , 2020, Nucleic Acids Res..

[16]  A. Armstrong,et al.  Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease , 2020, bioRxiv.

[17]  G. Gallo,et al.  Biochemical screening for SARS-CoV-2 main protease inhibitors , 2020, PloS one.

[18]  W. L. Jorgensen,et al.  Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2 , 2020, bioRxiv.

[19]  S. Perlman,et al.  3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice , 2020, Science Translational Medicine.

[20]  Christoph Nitsche,et al.  The SARS-CoV-2 main protease as drug target , 2020, Bioorganic & Medicinal Chemistry Letters.

[21]  A. Joachimiak,et al.  Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography , 2020, Nature Communications.

[22]  Dan Zhao,et al.  MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities , 2020, Cell Systems.

[23]  Oliver B Scott,et al.  ScaffoldGraph: an open-source library for the generation and analysis of molecular scaffold networks and scaffold trees , 2020, Bioinform..

[24]  Yibo Li,et al.  DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning , 2019, J. Chem. Inf. Model..

[25]  Michael Gastegger,et al.  Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules , 2019, NeurIPS.

[26]  Sang-Yeon Hwang,et al.  Scaffold-based molecular design using graph generative model , 2019, ArXiv.

[27]  José L Medina-Franco,et al.  DataWarrior: an evaluation of the open-source drug discovery tool , 2019, Expert opinion on drug discovery.

[28]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[29]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[30]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[31]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[32]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[33]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[34]  Ming Wen,et al.  Deep-Learning-Based Drug-Target Interaction Prediction. , 2017, Journal of proteome research.

[35]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[36]  Sumudu P Leelananda,et al.  Computational methods in drug discovery , 2016, Beilstein journal of organic chemistry.

[37]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[38]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[39]  Antony J. Williams,et al.  ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. , 2016, Chemical research in toxicology.

[40]  David S. Goodsell,et al.  AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility , 2015, PLoS Comput. Biol..

[41]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[42]  Cheng Luo,et al.  In silico ADME/T modelling for rational drug design , 2015, Quarterly Reviews of Biophysics.

[43]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[44]  Chee Keong Kwoh,et al.  Fast, accurate, and reliable molecular docking with QuickVina 2 , 2015, Bioinform..

[45]  William J. Allen,et al.  DOCK 6: Impact of new features and current docking performance , 2015, J. Comput. Chem..

[46]  Erik G Marklund,et al.  Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. , 2015, Analytical chemistry.

[47]  Jie Shen,et al.  admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties , 2012, J. Chem. Inf. Model..

[48]  Ian A. Watson,et al.  Rules for identifying potentially reactive or promiscuous compounds. , 2012, Journal of medicinal chemistry.

[49]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[50]  Robert Kiss,et al.  http://Mcule.com: a public web service for drug discovery , 2012, Journal of Cheminformatics.

[51]  Matthew D Segall,et al.  Multi-parameter optimization: identifying high quality compounds with a balance of properties. , 2012, Current pharmaceutical design.

[52]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[53]  Julien Michel,et al.  A simple QM/MM approach for capturing polarization effects in protein-ligand binding free energy calculations. , 2011, The journal of physical chemistry. B.

[54]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[55]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[56]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[57]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[58]  Daniel James,et al.  Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases , 2007, ChemMedChem.

[59]  Thomas Sander,et al.  Toxicity-Indicating Structural Patterns , 2006, J. Chem. Inf. Model..

[60]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[61]  Alexander Golbraikh,et al.  Novel Chirality Descriptors Derived from Molecular Topology. , 2001 .

[62]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[63]  Andreas Persidis,et al.  Artificial intelligence for drug design , 1997, Nature Biotechnology.

[64]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[65]  H. Well Childhood Lead Poisoning from the MMWR of August 19, 1988: Summary of the Report to Congress by the Agency for Toxic Substances and Disease Registry (ATSDR) , 1989 .

[66]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[67]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[68]  W. Liu,et al.  Structural basis for Nirmatrelvir in vitro efficacy against the Omicron variant of SARS-CoV-2 , 2022 .

[69]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[70]  Lemont B. Kier,et al.  The Electrotopological State: An Atom Index for QSAR , 1991 .