New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density
暂无分享,去创建一个
[1] O. Fèvre,et al. The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.
[2] M. Meneghetti,et al. HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.
[3] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[4] J. Kneib,et al. Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .
[5] J. Dunlop,et al. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.
[6] S. White,et al. Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.
[7] Claudia Winge,et al. GEMINI FRONTIER FIELDS: WIDE-FIELD ADAPTIVE OPTICS Ks-BAND IMAGING OF THE GALAXY CLUSTERS MACS J0416.1-2403 AND ABELL 2744 , 2014, 1409.1820.
[8] R. Bouwens,et al. FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.
[9] J. Kneib,et al. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.
[10] M. Oguri,et al. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.
[11] J. Diego,et al. A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.
[12] J. Dunlop,et al. The mass–metallicity–star formation rate relation at $\boldsymbol {z \gtrsim 2}$ with 3D Hubble Space Telescope , 2014 .
[13] J. Dunlop,et al. Essential physics of early galaxy formation , 2014, 1405.4862.
[14] V. Springel,et al. Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.
[15] D. Coe,et al. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.
[16] J. Silk,et al. A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION , 2014, 1404.5299.
[17] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[18] Z. Cai,et al. A PHYSICAL MODEL FOR THE EVOLVING ULTRAVIOLET LUMINOSITY FUNCTION OF HIGH REDSHIFT GALAXIES AND THEIR CONTRIBUTION TO THE COSMIC REIONIZATION , 2014, 1403.0055.
[19] J. Diego,et al. YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.
[20] L. Bradley,et al. THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.
[21] O. Fèvre,et al. The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.
[22] J. Dunlop,et al. The Mass-Metallicity-SFR Relation at z >~ 2 with 3D-HST , 2013, 1310.0816.
[23] M. L. N. Ashby,et al. THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.
[24] R. Cen,et al. HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION , 2013, 1308.3713.
[25] M. Donahue,et al. CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.
[26] G. W. Pratt,et al. Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.
[27] R. Bouwens,et al. PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.
[28] J. Dunlop,et al. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.
[29] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[30] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[31] J. Dunlop,et al. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.
[32] Michele Cirasuolo,et al. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.
[33] V. Wild,et al. The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.
[34] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[35] R. Bouwens,et al. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.
[36] O. Lahav,et al. A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.
[37] S. Khochfar,et al. The First Billion Years project: proto-galaxies reionizing the universe , 2012, 1211.1670.
[38] N. Evans,et al. Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.
[39] R. Bouwens,et al. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.
[40] T. Lauer,et al. A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.
[41] M. Franx,et al. THE BRIGHT END OF THE ULTRAVIOLET LUMINOSITY FUNCTION AT z ∼ 8: NEW CONSTRAINTS FROM CANDELS DATA IN GOODS-SOUTH , 2012, 1201.0755.
[42] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[43] R. Bouwens,et al. EXPANDED SEARCH FOR z ∼ 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8? , 2011, 1105.2297.
[44] K. Nagamine,et al. Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.
[45] J. Dunlop,et al. A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.
[46] J. Dunlop,et al. A robust sample of galaxies at redshifts 6.0 , 2011, 1102.4881.
[47] J. W. MacKenty,et al. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.
[48] J. Dunlop,et al. Early star-forming galaxies and the reionization of the Universe , 2010, Nature.
[49] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[50] B. Robertson. A METHOD FOR MEASURING THE BIAS OF HIGH-REDSHIFT GALAXIES FROM COSMIC VARIANCE , 2010, 1005.4927.
[51] B. Robertson. ESTIMATING LUMINOSITY FUNCTION CONSTRAINTS FROM HIGH-REDSHIFT GALAXY SURVEYS , 2010, 1001.1008.
[52] M. Franx,et al. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.
[53] H. Ferguson,et al. ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.
[54] J. Dunlop,et al. Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.
[55] Mark Lacy,et al. The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.
[56] R. Bouwens,et al. z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.
[57] M. Franx,et al. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.
[58] J. Dunlop,et al. The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.
[59] W. Sargent,et al. The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6 , 2006, astro-ph/0607633.
[60] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[61] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[62] L. Pozzetti,et al. The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.
[63] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[64] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[65] S. M. Fall,et al. Lyman-Alpha Emission from Galaxies , 1993 .
[66] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[67] J. B. Oke. Absolute spectral energy distributions for white dwarfs , 1974 .
[68] George Rhee,et al. Observing the First Galaxies , 2013 .
[69] O. Fèvre,et al. Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .