New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density

We present the results of a new search for galaxies at redshift z ≃ 9 in the first two Hubble Frontier Fields with completed HST WFC3/IR and ACS imaging. To ensure robust photometric redshift solutions, and to minimize incompleteness, we confine our search to objects with H_160 30 mag (within a 0.5-arcsec diameter aperture), and insist on detections in both H_160 and J_140. The result is a survey covering an effective area (after accounting for magnification) of 10.9 arcmin2, which yields 12 galaxies at 8.4 8.4 sources reported by Zheng et al. In the MACSJ0416.1−240 cluster field, we report five objects, and explain why each of these eluded detection or classification as z ≃ 9 galaxies in the published searches of the shallower CLASH data. Finally, we uncover four z ≃ 9 galaxies from the MACSJ0416.1−240 parallel field. Based on the published magnification maps, we find that only one of these 12 galaxies is likely boosted by more than a factor of 2 by gravitational lensing. Consequently, we are able to perform a fairly straightforward reanalysis of the normalization of the z ≃ 9 UV galaxy luminosity function as explored previously in the HUDF12 programme. We conclude that the new data strengthen the evidence for a continued smooth decline in UV luminosity density (and hence star formation rate density) from z ≃ 8 to 9, contrary to recent reports of a marked drop-off at these redshifts. This provides further support for the scenario in which early galaxy evolution is sufficiently extended to explain cosmic reionization.

[1]  O. Fèvre,et al.  The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.

[2]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[3]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[4]  J. Kneib,et al.  Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .

[5]  J. Dunlop,et al.  ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS , 2014, 1410.0962.

[6]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[7]  Claudia Winge,et al.  GEMINI FRONTIER FIELDS: WIDE-FIELD ADAPTIVE OPTICS Ks-BAND IMAGING OF THE GALAXY CLUSTERS MACS J0416.1-2403 AND ABELL 2744 , 2014, 1409.1820.

[8]  R. Bouwens,et al.  FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.

[9]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[10]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[11]  J. Diego,et al.  A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.

[12]  J. Dunlop,et al.  The mass–metallicity–star formation rate relation at $\boldsymbol {z \gtrsim 2}$ with 3D Hubble Space Telescope , 2014 .

[13]  J. Dunlop,et al.  Essential physics of early galaxy formation , 2014, 1405.4862.

[14]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[15]  D. Coe,et al.  FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.

[16]  J. Silk,et al.  A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION , 2014, 1404.5299.

[17]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[18]  Z. Cai,et al.  A PHYSICAL MODEL FOR THE EVOLVING ULTRAVIOLET LUMINOSITY FUNCTION OF HIGH REDSHIFT GALAXIES AND THEIR CONTRIBUTION TO THE COSMIC REIONIZATION , 2014, 1403.0055.

[19]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. I. A2744 , 2014, 1402.6743.

[20]  L. Bradley,et al.  THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.

[21]  O. Fèvre,et al.  The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.

[22]  J. Dunlop,et al.  The Mass-Metallicity-SFR Relation at z >~ 2 with 3D-HST , 2013, 1310.0816.

[23]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[24]  R. Cen,et al.  HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION , 2013, 1308.3713.

[25]  M. Donahue,et al.  CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.

[26]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[27]  R. Bouwens,et al.  PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.

[28]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[29]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[30]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[31]  J. Dunlop,et al.  THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.

[32]  Michele Cirasuolo,et al.  THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.

[33]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[34]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[35]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[36]  O. Lahav,et al.  A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.

[37]  S. Khochfar,et al.  The First Billion Years project: proto-galaxies reionizing the universe , 2012, 1211.1670.

[38]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[39]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[40]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[41]  M. Franx,et al.  THE BRIGHT END OF THE ULTRAVIOLET LUMINOSITY FUNCTION AT z ∼ 8: NEW CONSTRAINTS FROM CANDELS DATA IN GOODS-SOUTH , 2012, 1201.0755.

[42]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[43]  R. Bouwens,et al.  EXPANDED SEARCH FOR z ∼ 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8? , 2011, 1105.2297.

[44]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[45]  J. Dunlop,et al.  A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.

[46]  J. Dunlop,et al.  A robust sample of galaxies at redshifts 6.0 , 2011, 1102.4881.

[47]  J. W. MacKenty,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.

[48]  J. Dunlop,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[49]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[50]  B. Robertson A METHOD FOR MEASURING THE BIAS OF HIGH-REDSHIFT GALAXIES FROM COSMIC VARIANCE , 2010, 1005.4927.

[51]  B. Robertson ESTIMATING LUMINOSITY FUNCTION CONSTRAINTS FROM HIGH-REDSHIFT GALAXY SURVEYS , 2010, 1001.1008.

[52]  M. Franx,et al.  A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.

[53]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[54]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[55]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[56]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[57]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[58]  J. Dunlop,et al.  The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.

[59]  W. Sargent,et al.  The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6 , 2006, astro-ph/0607633.

[60]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[61]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[62]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[63]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[64]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[65]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[66]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[67]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[68]  George Rhee,et al.  Observing the First Galaxies , 2013 .

[69]  O. Fèvre,et al.  Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .