P-GaN-substrate sprouted giant pure negative electrocaloric effect in Mn-doped Pb(Zr0.3Ti0.7)O3 thin film with a super-broad operational temperature range

[1]  C. Bowen,et al.  Reply to the ‘Comment on “Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures”’ by X. Chen, V. Shvartsman, D. C. Lupascu and Q. M. Zhang, Energy Environ. Sci., 2021, DOI: 10.1039/D0EE02548H , 2021 .

[2]  Xiaoru Yuan,et al.  Co-Bridges: Pair-wise Visual Connection and Comparison for Multi-item Data Streams , 2020, IEEE Transactions on Visualization and Computer Graphics.

[3]  Jiagang Wu,et al.  A Bright New World of Ferroelectrics: Magic of Spontaneous Polarization. , 2020, ACS applied materials & interfaces.

[4]  Yunda Wang,et al.  A high-performance solid-state electrocaloric cooling system , 2020, Science.

[5]  H. Uršič,et al.  Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies , 2020, Journal of Materials Chemistry C.

[6]  Mengna Zhang,et al.  Advances into Understanding the Vital Role of the Mitochondrial Citrate Carrier (CIC) in Metabolic Diseases, A Review. , 2020, Pharmacological research.

[7]  Chunlin Zhao,et al.  Large Electrocaloric Effect in (Bi0.5Na0.5)TiO3-Based Relaxor Ferroelectrics. , 2020, ACS applied materials & interfaces.

[8]  Juekuan Yang,et al.  The ignored effects of vibrational entropy and electrocaloric effect in PbTiO3 and PbZr0.5Ti0.5O3 as studied through first-principles calculation , 2020, Acta Materialia.

[9]  Changhong Yang,et al.  Towards Multifunctional Electronics: Flexible NBT-Based Film with Large Electrocaloric Effect and High Energy Storage Property. , 2020, ACS applied materials & interfaces.

[10]  Qunjie Xu,et al.  B‐doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Li‐ion Batteries , 2014, Advanced Functional Materials.

[11]  Chunlin Zhao,et al.  Decoding the relationship between the electrocaloric strength and phase structure in perovskite ferroelectrics towards high performance , 2020 .

[12]  Jiangyu Li,et al.  High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy , 2020 .

[13]  S. Qin,et al.  Effect of Electric Field Orientation on Ferroelectric Phase Transition and Electrocaloric Effect , 2019, Acta Materialia.

[14]  Qi Zhang,et al.  Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film , 2019, Energy & Environmental Science.

[15]  Can Li,et al.  Bandgap Engineering of Dual Acceptor-Containing Naphthalene Diimide Polymers for All-Polymer Solar Cells , 2018, ACS Sustainable Chemistry & Engineering.

[16]  Zhong Lin Wang,et al.  Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range , 2018 .

[17]  Roy Kornbluh,et al.  Highly efficient electrocaloric cooling with electrostatic actuation , 2017, Science.

[18]  Yingbang Yao,et al.  Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics , 2017, Scientific Reports.

[19]  Ronggui Yang,et al.  Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling , 2017, Science.

[20]  Yanchao Wang,et al.  Monoclinic high-pressure polymorph of AlOOH predicted from first principles , 2016 .

[21]  S. Hyun,et al.  Giant Negative Electrocaloric Effects of Hf0.5Zr0.5O2 Thin Films , 2016, Advanced materials.

[22]  James F. Scott,et al.  Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives , 2016 .

[23]  Lang Chen,et al.  A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films , 2016 .

[24]  Christopher R. Bowen,et al.  Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures , 2016 .

[25]  Xian-tao Zhang,et al.  [Protective Effects of Ginkgolide N Against Glutamate-Induced Injury in PC12 Cells]. , 2015, Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.

[26]  Yang Liu,et al.  Giant Negative Electrocaloric Effect in Antiferroelectric La‐Doped Pb(ZrTi)O3 Thin Films Near Room Temperature , 2015, Advanced materials.

[27]  S. Trolier-McKinstry,et al.  Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion , 2014 .

[28]  J. Íñiguez,et al.  First-principles study of the multimode antiferroelectric transition in PbZrO 3 , 2014, 1407.8405.

[29]  R. Pirc,et al.  Negative electrocaloric effect in antiferroelectric PbZrO3 , 2014 .

[30]  Jiwei Zhai,et al.  A comprehensive review on the progress of lead zirconate-based antiferroelectric materials , 2014 .

[31]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[32]  K. Jiang,et al.  Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In 1/2 Nb 1/2 )O 3 -Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystals , 2013 .

[33]  Xavier Moya,et al.  The Electrocaloric Efficiency of Ceramic and Polymer Films , 2013, Advanced materials.

[34]  Qi Zhang,et al.  A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature , 2013 .

[35]  X. Zhong,et al.  The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration , 2013 .

[36]  Jun Zhou,et al.  [Respiratory physicians' knowledge, attitude and practice of tobacco control and their smoking status in the city of Chongqing]. , 2013, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[37]  Shi-Chune Yao,et al.  A chip scale electrocaloric effect based cooling device , 2013 .

[38]  D. Bao,et al.  Dielectric relaxor behaviors and tunability of (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 thin films fabricated by sol–gel method , 2012 .

[39]  A. Akbarzadeh,et al.  Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. , 2012, Physical review letters.

[40]  I. Ponomareva,et al.  Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. , 2012, Physical review letters.

[41]  S. Shi,et al.  Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature , 2011 .

[42]  W. Garcia,et al.  Molecular Characterization and Tandem Mass Spectrometry of the Lectin Extracted from the Seeds of Dioclea sclerocarpa Ducke , 2011, Molecules.

[43]  Venkata Sreenivas Puli,et al.  Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors , 2011, Journal of Physics D: Applied Physics.

[44]  O. P. Thakur,et al.  Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3 , 2011 .

[45]  G. Manos,et al.  Electrocaloric effect in a ferroelectric Pb ( Zn 1 / 3 Nb 2 / 3 ) O 3 -PbTiO 3 single crystal , 2010 .

[46]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[47]  N. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[48]  Qi Zhang,et al.  Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films , 2003 .

[49]  R. Katiyar,et al.  Studies on ferroelectric perovskites and Bi‐layered compounds using micro‐Raman spectroscopy , 2002 .

[50]  Qi Zhang,et al.  Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications , 2001 .

[51]  J. Hańderek,et al.  Structural and spectroscopic studies of niobium doped PZT 95/5 ceramics , 1992 .

[52]  R. Katiyar,et al.  Coupled modes with A1 symmetry in tetragonal BaTiO3 , 1974 .

[53]  R. A. Condrate,et al.  Raman Spectrum of PbZrO3 , 1973 .