C1Approximations of Inertial Manifolds for Dissipative Nonlinear Equations
暂无分享,去创建一个
[1] Edriss S. Titi,et al. On the rate of convergence of the nonlinear Galerkin methods , 1993 .
[2] Roger Temam,et al. The algebraic approximation of attractors: the finite dimensional case , 1988 .
[3] M. Marion,et al. A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .
[4] G. Sell,et al. Inertial manifolds : the non-self-adjoint case , 1992 .
[5] E. Titi. Un critére pour l'approximation des solutions périodiques des équations de Navier-Stokes , 1991 .
[6] Darryl D. Holm,et al. Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .
[7] B. Nicolaenko,et al. Spectral barriers and inertial manifolds for dissipative partial differential equations , 1989 .
[8] Donald A. Jones,et al. Attractive Invariant Manifolds under Approximation. Inertial Manifolds , 1995 .
[9] Anthony M. Bloch,et al. On The Dynamics of Rotating Elastic Beams , 1991 .
[10] G. Sell,et al. Inertial manifolds for reaction diffusion equations in higher space dimensions , 1988 .
[11] Donald A. Jones,et al. On the effectiveness of the approximate inertial manifold—a computational study , 1995 .
[12] Roger Temam,et al. Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .
[13] R. Temam,et al. Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .
[14] R. Temam,et al. Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents , 1987 .
[15] R. Temam,et al. On the Large Time Galerkin Approximation of the Navier–Stokes Equations , 1984 .
[16] Edriss S. Titi,et al. On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .
[17] R. Téman,et al. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .
[18] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[19] Edriss S. Titi,et al. Computational efficiency and approximate inertial manifolds for a Bénard convection system , 1993 .
[20] George R. Sell,et al. Construction of inertial manifolds by elliptic regularization , 1991 .
[21] Donald A. Jones. On the behavior of attractors under finite difference approximation , 1995 .
[22] Edriss S. Titi,et al. Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .
[23] Edriss S. Titi,et al. On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .
[24] Roger Temam,et al. Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension , 1986 .
[25] R. Temam,et al. Nonlinear Galerkin methods , 1989 .
[26] C. Bardos,et al. Sur l'unicité retrograde des equations paraboliques et quelques questions voisines , 1973 .
[27] R. Temam,et al. Approximate inertial manifolds and effective viscosity in turbulent flows , 1991 .
[28] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[29] Edriss S. Titi,et al. Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation , 1991 .
[30] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[31] Shui-Nee Chow,et al. Smoothness of inertial manifolds , 1992 .
[32] R. Temam,et al. Variétés inertielles des équations différentielles dissipatives , 1985 .
[33] M. Jolly. Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations , 1993 .
[34] Michael S. Jolly,et al. Explicit construction of an inertial manifold for a reaction diffusion equation , 1989 .
[35] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[36] I. Kevrekidis,et al. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .
[37] George R. Sell,et al. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .
[38] Some remarks on the smoothness of inertial manifolds , 1990 .
[39] S. Sritharan,et al. Analysis of regularized Navier-Stokes equations. I, II , 1991 .
[40] J. Ghidaglia,et al. Time-discretization and inertial manifolds , 1989 .
[41] R. Temam,et al. Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .
[42] George R. Sell,et al. Perturbations of attractors of differential equations , 1991 .
[43] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[44] Edriss S. Titi,et al. Determining nodes, finite difference schemes and inertial manifolds , 1991 .
[45] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[46] On approximate inertial manifolds for two and three dimensional turbulent flows , 1992 .
[47] Edriss S. Titi,et al. A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations , 1994 .
[48] James C. Robinson. INERTIAL MANIFOLDS AND THE CONE CONDITION , 1993 .
[49] M. Marion,et al. Approximate inertial manifolds for reaction-diffusion equations in high space dimension , 1989 .
[50] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[51] E. Titi,et al. Une variété approximante de l'attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie , 1988 .
[52] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[53] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .