C1Approximations of Inertial Manifolds for Dissipative Nonlinear Equations

Abstract In this paper we study a class of nonlinear dissipative partial differential equations that have inertial manifolds. This means that the long-time behavior is equivalent to a certain finite system of ordinary differential equations. We investigate ways in which these finite systems can be approximated in theC1sense. Geometrically this may be interpreted as constructing manifolds in phase space that areC1close to the inertial manifold of the partial differential equation. Under such approximations the invariant hyperbolic sets of the global attractor persist.

[1]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[2]  Roger Temam,et al.  The algebraic approximation of attractors: the finite dimensional case , 1988 .

[3]  M. Marion,et al.  A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .

[4]  G. Sell,et al.  Inertial manifolds : the non-self-adjoint case , 1992 .

[5]  E. Titi Un critére pour l'approximation des solutions périodiques des équations de Navier-Stokes , 1991 .

[6]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[7]  B. Nicolaenko,et al.  Spectral barriers and inertial manifolds for dissipative partial differential equations , 1989 .

[8]  Donald A. Jones,et al.  Attractive Invariant Manifolds under Approximation. Inertial Manifolds , 1995 .

[9]  Anthony M. Bloch,et al.  On The Dynamics of Rotating Elastic Beams , 1991 .

[10]  G. Sell,et al.  Inertial manifolds for reaction diffusion equations in higher space dimensions , 1988 .

[11]  Donald A. Jones,et al.  On the effectiveness of the approximate inertial manifold—a computational study , 1995 .

[12]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .

[13]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[14]  R. Temam,et al.  Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents , 1987 .

[15]  R. Temam,et al.  On the Large Time Galerkin Approximation of the Navier–Stokes Equations , 1984 .

[16]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .

[17]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[18]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[19]  Edriss S. Titi,et al.  Computational efficiency and approximate inertial manifolds for a Bénard convection system , 1993 .

[20]  George R. Sell,et al.  Construction of inertial manifolds by elliptic regularization , 1991 .

[21]  Donald A. Jones On the behavior of attractors under finite difference approximation , 1995 .

[22]  Edriss S. Titi,et al.  Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .

[23]  Edriss S. Titi,et al.  On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .

[24]  Roger Temam,et al.  Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension , 1986 .

[25]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[26]  C. Bardos,et al.  Sur l'unicité retrograde des equations paraboliques et quelques questions voisines , 1973 .

[27]  R. Temam,et al.  Approximate inertial manifolds and effective viscosity in turbulent flows , 1991 .

[28]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[29]  Edriss S. Titi,et al.  Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation , 1991 .

[30]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[31]  Shui-Nee Chow,et al.  Smoothness of inertial manifolds , 1992 .

[32]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[33]  M. Jolly Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations , 1993 .

[34]  Michael S. Jolly,et al.  Explicit construction of an inertial manifold for a reaction diffusion equation , 1989 .

[35]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[36]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[37]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[38]  Some remarks on the smoothness of inertial manifolds , 1990 .

[39]  S. Sritharan,et al.  Analysis of regularized Navier-Stokes equations. I, II , 1991 .

[40]  J. Ghidaglia,et al.  Time-discretization and inertial manifolds , 1989 .

[41]  R. Temam,et al.  Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .

[42]  George R. Sell,et al.  Perturbations of attractors of differential equations , 1991 .

[43]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[44]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[45]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[46]  On approximate inertial manifolds for two and three dimensional turbulent flows , 1992 .

[47]  Edriss S. Titi,et al.  A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations , 1994 .

[48]  James C. Robinson INERTIAL MANIFOLDS AND THE CONE CONDITION , 1993 .

[49]  M. Marion,et al.  Approximate inertial manifolds for reaction-diffusion equations in high space dimension , 1989 .

[50]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[51]  E. Titi,et al.  Une variété approximante de l'attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie , 1988 .

[52]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[53]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .