An adaptive bird swarm algorithm with irregular random flight and its application

Abstract The bird swarm algorithm (BSA) is a very important bionic intelligence algorithm which can be used to solve many optimization problems. The main idea of this paper is to increase the effectiveness of BSA by improving the flight behaviour. This paper provides an adaptive bird swarm algorithm with the irregular random flight (AI-BSA) for solving the portfolio optimization problems with cardinality constraints. We prove the local convergence of AI-BSA under mild conditions and verify the effectiveness of AI-BSA via some numerical tests. Moreover, we give a detailed process for solving the cardinality constrained portfolio optimization problem by using AI-BSA and provide a numerical example to compare with both the bird swarm algorithm and particle swarm optimization.

[1]  Wei Pan,et al.  Grey wolf optimizer for unmanned combat aerial vehicle path planning , 2016, Adv. Eng. Softw..

[2]  Tunchan Cura,et al.  Particle swarm optimization approach to portfolio optimization , 2009 .

[3]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[4]  Xin-She Yang,et al.  Cuckoo search: recent advances and applications , 2013, Neural Computing and Applications.

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[7]  Kai Song,et al.  The artificial tree (AT) algorithm , 2017, Eng. Appl. Artif. Intell..

[8]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[9]  Andrea Schaerf,et al.  Local Search Techniques for Constrained Portfolio Selection Problems , 2001, ArXiv.

[10]  Jun Jiang,et al.  Visual tracking using improved flower pollination algorithm , 2018 .

[11]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[12]  Yun-Chia Liang,et al.  An artificial bee colony algorithm for the cardinality-constrained portfolio optimization problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[13]  Sergio Gómez,et al.  Portfolio selection using neural networks , 2005, Comput. Oper. Res..

[14]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[15]  Yu Liu,et al.  A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization , 2015, Expert Syst. Appl..

[16]  Haibin Duan Ant Colony Optimization: Principle, Convergence and Application , 2011 .

[17]  Liang Zhang,et al.  An Improved Particle Filter Based on Bird Swarm Algorithm , 2017, 2017 10th International Symposium on Computational Intelligence and Design (ISCID).

[18]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[19]  Janson Naiborhu,et al.  Convergence analysis of particle swarm optimization (PSO) method on the with-in host dengue infection treatment model , 2016 .

[20]  D Lin,et al.  A MULTIOBJECTIVE GENETIC ALGORITHM FOR PORTFOLIO SELECTION PROBLEM , 2001 .

[21]  F. Jolai,et al.  A new IPSO-SA approach for cardinality constrained portfolio optimization , 2011 .

[22]  Xianjun Du,et al.  Parameter estimation of activated sludge process based on an improved cuckoo search algorithm. , 2018, Bioresource technology.

[23]  Alireza Nazemi,et al.  Solving portfolio selection models with uncertain returns using an artificial neural network scheme , 2015, Applied Intelligence.

[24]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[25]  Chih-Chung Lo,et al.  Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization , 2012, Expert Syst. Appl..

[26]  Yves Crama,et al.  Simulated annealing for complex portfolio selection problems , 2003, Eur. J. Oper. Res..

[27]  Yunlong Zhu,et al.  A new meta-heuristic butterfly-inspired algorithm , 2017, J. Comput. Sci..

[28]  Po-Chang Ko,et al.  Resource allocation neural network in portfolio selection , 2008, Expert Syst. Appl..

[29]  Shingo Mabu,et al.  A model of portfolio optimization using time adapting genetic network programming , 2010, Comput. Oper. Res..

[30]  Zbigniew Michalewicz,et al.  Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review , 2017, Evolutionary Computation.

[31]  Rong Qu,et al.  A hybrid algorithm for constrained portfolio selection problems , 2013, Applied Intelligence.

[32]  Hsin-Chuan Kuo,et al.  A Directed Genetic Algorithm for global optimization , 2013, Appl. Math. Comput..

[33]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[34]  M. Gilli,et al.  HEURISTIC APPROACHES FOR PORTFOLIO OPTIMIZATION , 2000 .

[35]  Shingo Mabu,et al.  A portfolio selection model using genetic relation algorithm and genetic network programming , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[36]  Gang Xu,et al.  On convergence analysis of particle swarm optimization algorithm , 2018, J. Comput. Appl. Math..

[37]  Yu Liu,et al.  A New Bio-inspired Algorithm: Chicken Swarm Optimization , 2014, ICSI.

[38]  Hans Kellerer,et al.  Optimization of cardinality constrained portfolios with a hybrid local search algorithm , 2003, OR Spectr..

[39]  Yu Liu,et al.  A new bio-inspired optimisation algorithm: Bird Swarm Algorithm , 2016, J. Exp. Theor. Artif. Intell..

[40]  Kin Keung Lai,et al.  A model for portfolio selection with order of expected returns , 2000, Comput. Oper. Res..

[41]  Ying Wu,et al.  A Knowledge-Based Artificial Fish-Swarm Algorithm , 2010, 2010 13th IEEE International Conference on Computational Science and Engineering.