How Viruses Enter Animal Cells

Viruses replicate within living cells and use the cellular machinery for the synthesis of their genome and other components. To gain access, they have evolved a variety of elegant mechanisms to deliver their genes and accessory proteins into the host cell. Many animal viruses take advantage of endocytic pathways and rely on the cell to guide them through a complex entry and uncoating program. In the dialogue between the cell and the intruder, the cell provides critical cues that allow the virus to undergo molecular transformations that lead to successful internalization, intra-cellular transport, and uncoating.

[1]  N. Pante,et al.  Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. , 2002, Molecular biology of the cell.

[2]  B. Nichols A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex , 2002, Nature Cell Biology.

[3]  R. Doms,et al.  Hepatitis C Virus Glycoproteins Interact with DC-SIGN and DC-SIGNR , 2003, Journal of Virology.

[4]  R. Eisenberg,et al.  Three classes of cell surface receptors for alphaherpesvirus entry. , 2000, Virology.

[5]  I. Pastan,et al.  Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis , 1983, Cell.

[6]  L. Medina-Kauwe Endocytosis of adenovirus and adenovirus capsid proteins. , 2003, Advanced drug delivery reviews.

[7]  R. Rose,et al.  Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin α2β1 heterodimers , 1999 .

[8]  K. Chandran,et al.  Strategy for Nonenveloped Virus Entry: a Hydrophobic Conformer of the Reovirus Membrane Penetration Protein μ1 Mediates Membrane Disruption , 2002, Journal of Virology.

[9]  P. Coursaget,et al.  Human Papillomavirus Types 16, 31, and 58 Use Different Endocytosis Pathways To Enter Cells , 2003, Journal of Virology.

[10]  T. Wolfsberg,et al.  Virus-cell and cell-cell fusion. , 1996, Annual review of cell and developmental biology.

[11]  M. Bewley,et al.  Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. , 1999, Science.

[12]  R. G. Anderson The caveolae membrane system. , 1998, Annual review of biochemistry.

[13]  A. Helenius,et al.  Phosphorylation-dependent Binding of Hepatitis B Virus Core Particles to the Nuclear Pore Complex , 1999, The Journal of cell biology.

[14]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[15]  U. Greber Signalling in viral entry , 2002, Cellular and Molecular Life Sciences CMLS.

[16]  I. Goldberg,et al.  Cell Penetration and Trafficking of Polyomavirus , 2003, Journal of Virology.

[17]  W. Weis,et al.  Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR , 2001, Science.

[18]  K. Martin,et al.  Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import , 1991, Cell.

[19]  K. Roepstorff,et al.  Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. , 2002, Molecular biology of the cell.

[20]  M. Hallek,et al.  Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus , 2001, Science.

[21]  T. Jardetzky,et al.  Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. , 2002, Molecular cell.

[22]  D. Wiley,et al.  Herpes simplex virus glycoprotein D bound to the human receptor HveA. , 2001, Molecular cell.

[23]  R. Samulski,et al.  Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions , 1998, Journal of Virology.

[24]  S. Schmid,et al.  Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants , 1989, The Journal of cell biology.

[25]  Gary R. Whittaker,et al.  Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis , 2002, Journal of Virology.

[26]  B. Cullen Journey to the Center of the Cell , 2001, Cell.

[27]  J. Hogle Poliovirus cell entry: common structural themes in viral cell entry pathways. , 2002, Annual review of microbiology.

[28]  M. Carrington,et al.  A Dendritic Cell–Specific Intercellular Adhesion Molecule 3–Grabbing Nonintegrin (Dc-Sign)–Related Protein Is Highly Expressed on Human Liver Sinusoidal Endothelial Cells and Promotes HIV-1 Infection , 2001, The Journal of experimental medicine.

[29]  M. Fornerod,et al.  Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1 , 2001, Nature Cell Biology.

[30]  Thilo Stehle,et al.  Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment , 1994, Nature.

[31]  M. Marsh,et al.  Infectious HIV-1 assembles in late endosomes in primary macrophages , 2003, The Journal of cell biology.

[32]  P. Stewart,et al.  Structural basis of nonenveloped virus cell entry. , 2003, Advances in protein chemistry.

[33]  A. Helenius,et al.  Microtubule-mediated Transport of Incoming Herpes Simplex Virus 1 Capsids to the Nucleus , 1997, The Journal of cell biology.

[34]  S. A. Gallo,et al.  The HIV Env-mediated fusion reaction. , 2003, Biochimica et biophysica acta.

[35]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[36]  A. Nakanishi,et al.  How do animal DNA viruses get to the nucleus? , 1998, Annual review of microbiology.

[37]  W. Greene,et al.  Slipping through the door: HIV entry into the nucleus. , 2002, Microbes and infection.

[38]  W. Hendrickson,et al.  DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. , 2002, Immunity.

[39]  S. Huong,et al.  Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus , 2003, Nature.

[40]  G. Whittaker,et al.  Differential Requirements of Rab5 and Rab7 for Endocytosis of Influenza and Other Enveloped Viruses , 2003, Traffic.

[41]  R. Doms,et al.  DC-SIGN and DC-SIGNR: helping hands for HIV. , 2001, Trends in immunology.

[42]  M. Kielian,et al.  Membrane fusion and the alphavirus life cycle. , 1995, Advances in virus research.

[43]  L. Norkin Caveolae in the uptake and targeting of infectious agents and secreted toxins. , 2001, Advanced drug delivery reviews.

[44]  M. Law,et al.  Vaccinia virus motility. , 2003, Annual review of microbiology.

[45]  C. Mandl,et al.  Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. , 2003, Virology.

[46]  J. Lepault,et al.  Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus , 2004, Nature.

[47]  A. Helenius,et al.  On the entry of semliki forest virus into BHK-21 cells , 1980, The Journal of cell biology.

[48]  I. Nabi,et al.  Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum , 2003, Journal of Cell Science.

[49]  M. Marsh,et al.  SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. , 1997, Journal of cell science.

[50]  L. Pelkmans,et al.  Insider information: what viruses tell us about endocytosis. , 2003, Current opinion in cell biology.

[51]  F. Heinz,et al.  The machinery for flavivirus fusion with host cell membranes. , 2001, Current opinion in microbiology.

[52]  Lucas Pelkmans,et al.  Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER , 2001, Nature Cell Biology.

[53]  Gary R Whittaker Virus nuclear import. , 2003, Advanced drug delivery reviews.

[54]  H. Pelham,et al.  A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies , 2002, Nature Cell Biology.

[55]  L. Daniels,et al.  Glycosaminoglycan synthesis is depressed during mitosis and elevated during early G1 , 1985, The Journal of cell biology.

[56]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[57]  B. Hub,et al.  Endocytosis of Adeno-Associated Virus Type 5 Leads to Accumulation of Virus Particles in the Golgi Compartment , 2002, Journal of Virology.

[58]  Thilo Stehle,et al.  Gangliosides are receptors for murine polyoma virus and SV40 , 2003, The EMBO journal.

[59]  L. M. Nelson,et al.  Nuclear import and DNA binding of human papillomavirus type 45 L1 capsid protein , 2000, Journal of cellular biochemistry.

[60]  S. Harrison,et al.  Structural basis for membrane fusion by enveloped viruses. , 1999, Molecular membrane biology.

[61]  G. A. Smith,et al.  Sorting and Transport of Alpha Herpesviruses in Axons , 2001, Traffic.

[62]  J. Forstová,et al.  Caveolae Are Involved in the Trafficking of Mouse Polyomavirus Virions and Artificial VP1 Pseudocapsids toward Cell Nuclei , 2001, Journal of Virology.

[63]  Brian J Smith,et al.  Structural studies of the resistance of influenza virus neuramindase to inhibitors. , 2002, Journal of medicinal chemistry.

[64]  A. Helenius,et al.  Ganglioside‐dependent cell attachment and endocytosis of murine polyomavirus‐like particles , 2003, FEBS letters.

[65]  R. Steinman,et al.  DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells , 2003, The Journal of experimental medicine.

[66]  T. Hyypiä,et al.  Internalization of Echovirus 1 in Caveolae , 2002, Journal of Virology.

[67]  D. Bamford,et al.  Common principles in viral entry. , 2002, Annual review of microbiology.

[68]  A. Helenius,et al.  Nuclear import of hepatitis B virus capsids and release of the viral genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Sodeik,et al.  Mechanisms of viral transport in the cytoplasm. , 2000, Trends in microbiology.

[70]  R. Doms,et al.  HIV-1 entry and its inhibition. , 2003, Current topics in microbiology and immunology.

[71]  Michael J Rust,et al.  Visualizing infection of individual influenza viruses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Fassati,et al.  Nuclear Import of Viral DNA Genomes , 2003, Traffic.

[73]  F. Homa,et al.  The UL6 Gene Product Forms the Portal for Entry of DNA into the Herpes Simplex Virus Capsid , 2001, Journal of Virology.

[74]  M. Lawrence,et al.  The structural biology of type I viral membrane fusion , 2003, Nature Reviews Molecular Cell Biology.

[75]  R. Insall,et al.  WASP homology sequences in baculoviruses. , 2001, Trends in cell biology.

[76]  M. Rossmann,et al.  Picornavirus-receptor interactions. , 2002, Trends in microbiology.

[77]  R. Parton,et al.  Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and Common Mechanisms , 2003, Traffic.

[78]  I. Pastan,et al.  pH-dependent lysis of liposomes by adenovirus. , 1986, Biochemistry.

[79]  Samuel K Sia,et al.  Short constrained peptides that inhibit HIV-1 entry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Griffin,et al.  Binding of Sindbis Virus to Cell Surface Heparan Sulfate , 1998, Journal of Virology.

[81]  S. Crennell,et al.  Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase , 2001, Nature Structural Biology.

[82]  P. Colman,et al.  Structure and diversity of influenza virus neuraminidase. , 1985, Current topics in microbiology and immunology.

[83]  A. Helenius,et al.  Virus Entry into Animal Cells , 1989, Advances in Virus Research.

[84]  O. Schwartz,et al.  DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2* , 2003, Journal of Biological Chemistry.

[85]  A. Banerjee,et al.  Role of heparan sulfate in human parainfluenza virus type 3 infection. , 2002, Virology.

[86]  G. Nemerow Cell receptors involved in adenovirus entry. , 2000, Virology.

[87]  Urs F. Greber,et al.  Microtubule-dependent Plus- and Minus End–directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus , 1999, The Journal of cell biology.

[88]  G. Blobel,et al.  Nuclear Import of Influenza Virus RNA Can Be Mediated by Viral Nucleoprotein and Transport Factors Required for Protein Import (*) , 1995, The Journal of Biological Chemistry.

[89]  R. Parton,et al.  Caveolae and caveolins. , 1996, Current opinion in cell biology.

[90]  S. Woodman,et al.  Caveolae: From Cell Biology to Animal Physiology , 2002, Pharmacological Reviews.

[91]  J. M. Slack,et al.  Actin binding and proteolysis by the baculovirus AcMNPV: the role of virion-associated V-CATH. , 1996, Virology.

[92]  S. J. Flynn,et al.  Mode of interaction between pseudorabies virus and heparan sulfate/heparin. , 1996, Virology.

[93]  U. Kutay,et al.  Herpes Simplex Virus Type 1 Entry into Host Cells: Reconstitution of Capsid Binding and Uncoating at the Nuclear Pore Complex In Vitro , 2000, Molecular and Cellular Biology.

[94]  Y. Modis,et al.  Structure of the dengue virus envelope protein after membrane fusion , 2004, Nature.

[95]  Ivan R. Nabi,et al.  Caveolae/raft-dependent endocytosis , 2003, The Journal of cell biology.

[96]  N. McMillan,et al.  Carboxy-fluorescein diacetate, succinimidyl ester labeled papillomavirus virus-like particles fluoresce after internalization and interact with heparan sulfate for binding and entry. , 2003, Virology.

[97]  Hugues Lortat-Jacob,et al.  Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. , 2002, Immunity.

[98]  J. Lepault,et al.  Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallography , 2003, Cell.

[99]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[100]  R. Doms,et al.  DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. , 2003, Virology.

[101]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[102]  D. McDonald,et al.  Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions , 2003, Science.

[103]  Lucas Pelkmans,et al.  Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae , 2002, Science.

[104]  J. Esko,et al.  Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate , 1997, Nature Medicine.

[105]  A. Helenius,et al.  Viral entry into the nucleus. , 2000, Annual review of cell and developmental biology.