Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles

[1]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[2]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[3]  B. G. Potter,et al.  Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. , 2000, Science.

[4]  Dongyuan Zhao,et al.  Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas , 2000 .

[5]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[6]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[7]  M. Jaroniec,et al.  Characterization of the Porous Structure of SBA-15 , 2000 .

[8]  A. Polman,et al.  Origin of MeV ion irradiation-induced stress changes in SiO2 , 2000 .

[9]  D. Zhao,et al.  Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals , 2000 .

[10]  Jianyi Lin Hydrogen Storage in Nanotubes , 2000, Science.

[11]  S. Bezrukov,et al.  Ion Channels as Molecular Coulter Counters to Probe Metabolite Transport , 2000, The Journal of Membrane Biology.

[12]  Yunfeng Lu,et al.  Rapid prototyping of patterned functional nanostructures , 2000, Nature.

[13]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Sinclair,et al.  Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001) , 2000 .

[15]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[16]  Kageyama,et al.  Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica , 1999, Science.

[17]  Daniel C. Ralph,et al.  Nanofabrication using a stencil mask , 1999 .

[18]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[19]  M. Sinclair,et al.  Spontaneous Pattern Formation on Ion Bombarded Si(001) , 1999 .

[20]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[21]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[22]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[23]  D. Zhao,et al.  Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers , 1998 .

[24]  M. Reed,et al.  The Electrical Measurement of Molecular Junctions , 1998 .

[25]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[26]  S. Stupp,et al.  Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. , 1997, Science.

[27]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[28]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[29]  R. Ryoo,et al.  Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation , 1997 .

[30]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[32]  S. Hong,et al.  Investigation of the Platinum Cluster Size and Location on Zeolite KL with 129Xe NMR, XAFS, and Xenon Adsorption , 1996 .

[33]  조성준,et al.  Investigation of the platinum cluster size and location on zeolite KL with **129Xe NMR, XAFS, and Xenon adsorption. , 1996 .

[34]  Yasushi Murakami,et al.  Size effects of platinum particles on the electroreduction of oxygen , 1996 .

[35]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[36]  Alan Chambers,et al.  Catalytic Engineering of Carbon Nanostructures , 1995 .

[37]  T. Kyotani,et al.  Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as a Template , 1995 .

[38]  Ralph,et al.  Spectroscopic measurements of discrete electronic states in single metal particles. , 1995, Physical review letters.

[39]  A. J. Howard,et al.  Roughening instability and ion‐induced viscous relaxation of SiO2 surfaces , 1994 .

[40]  Pulickel M. Ajayan,et al.  Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis , 1994 .

[41]  Sergey M. Bezrukov,et al.  Counting polymers moving through a single ion channel , 1994, Nature.

[42]  G. Stoner,et al.  Microstructural Effects on Electrocatalytic Oxygen Reduction Activity of Nano‐Grained Thin‐film Platinum in Acid Media , 1994 .

[43]  Peter Seitz,et al.  Light-emitting devices in industrial CMOS technology , 1993 .

[44]  Jeong Yong Lee,et al.  Application of the xenon-adsorption method for the study of metal cluster formation and growth on Y zeolite , 1992 .

[45]  T. Nenadovic,et al.  Sputtering and surface topography of oxides , 1990 .

[46]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[47]  M. Peuckert,et al.  Oxygen Reduction on Small Supported Platinum Particles , 1986 .

[48]  S. Wolf,et al.  Silicon Processing for the VLSI Era , 1986 .