Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures

SUMMARY The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

[1]  D. Stavenga,et al.  Oil droplets of bird eyes: microlenses acting as spectral filters , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  D. Stavenga,et al.  Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin–Lebedeff interference microscopy , 2013, Light: Science & Applications.

[3]  S. Mochrie,et al.  Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species , 2012, Journal of The Royal Society Interface.

[4]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[5]  L. D’Alba,et al.  Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers , 2012, Journal of Experimental Biology.

[6]  J. Tinbergen,et al.  Kingfisher feathers – colouration by pigments, spongy nanostructures and thin films , 2011, Journal of Experimental Biology.

[7]  Bodo D Wilts,et al.  Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. , 2011, Optics express.

[8]  Absorbance of retinal oil droplets of the budgerigar: sex, spatial and plumage morph-related variation , 2011, Journal of Comparative Physiology A.

[9]  R. Prum,et al.  How colorful are birds? Evolution of the avian plumage color gamut , 2011 .

[10]  N. Marshall,et al.  Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules , 2011, Proceedings of the Royal Society B: Biological Sciences.

[11]  Livia S. Carvalho,et al.  Ultraviolet-sensitive vision in long-lived birds , 2011, Proceedings of the Royal Society B: Biological Sciences.

[12]  A. Bennett,et al.  The evolution of plumage colouration in parrots: a review , 2010 .

[13]  J. Bowmaker Evolution of vertebrate visual pigments , 2008, Vision Research.

[14]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[15]  Rajeev Ramanath,et al.  Color Perception , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[16]  K. McGraw Mechanics of Melanin-Based Coloration , 2006, Bird Coloration, Volume 1.

[17]  K. McGraw,et al.  Mechanics of Carotenoid-Based Coloration , 2006, Bird Coloration, Volume 1.

[18]  K. McGraw,et al.  Distribution of unique red feather pigments in parrots , 2005, Biology Letters.

[19]  M. Vorobyev,et al.  Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors , 2005, Journal of Comparative Physiology A.

[20]  K. McGraw,et al.  Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots. , 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[21]  G. Hill,et al.  Nanostructure predicts intraspecific variation in ultraviolet–blue plumage colour† , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  T. Goldsmith,et al.  The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus , 2003, Journal of Comparative Physiology A.

[23]  D. Osorio,et al.  Spectral reflectance and directional properties of structural coloration in bird plumage. , 2002, The Journal of experimental biology.

[24]  N. Hart The Visual Ecology of Avian Photoreceptors , 2001, Progress in Retinal and Eye Research.

[25]  G. Celentano,et al.  The chemical structure of the pigments in Ara macao plumage. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[26]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[27]  Jules Davidoff,et al.  Color perception , 1998 .

[28]  I. Cuthill,et al.  Visual pigments, oil droplets and cone photoreceptor distribution in the european starling (Sturnus vulgaris) , 1998, The Journal of experimental biology.

[29]  J. Bowmaker,et al.  Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds , 1997, Vision Research.

[30]  G. Zerbi,et al.  In situ resonance Raman spectra of carotenoids in bird's feathers , 1995 .

[31]  J. S. Collins,et al.  The cone oil droplets of avian retinas , 1984, Vision Research.

[32]  C. H. Greenewalt,et al.  Iridescent Colors of Hummingbird Feathers , 1960 .