A splitting method for fully nonlinear degenerate parabolic PDEs

Motivated by applications in Asian option pricing, optimal commodity trading etc., we propose a splitting scheme for a fully nonlinear degenerate parabolic PDEs. The splitting scheme generalizes the probabilistic scheme of Fahim, Touzi and Warin to the degenerate case. We also provide a simulation-regression method to make the splitting scheme implementable. General convergence as well as rate of convergence are obtained under reasonable conditions. Finally, we give some numerical tests in an Asian option pricing problem and an optimal hydropower management problem.

[1]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[2]  Min Dai,et al.  GUARANTEED MINIMUM WITHDRAWAL BENEFIT IN VARIABLE ANNUITIES , 2007 .

[3]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[4]  B. Bouchard,et al.  Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .

[5]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[6]  Gilles Pages,et al.  When are Swing options bang-bang and how to use it , 2007, 0705.0466.

[7]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[8]  J. Frédéric Bonnans,et al.  Energy contracts management by stochastic programming techniques , 2012, Ann. Oper. Res..

[9]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[10]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[11]  J. Doob Stochastic processes , 1953 .

[12]  J. Frédéric Bonnans,et al.  A fast algorithm for the two dimensional HJB equation of stochastic control , 2004 .

[13]  Nizar Touzi,et al.  A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.

[14]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[15]  Zhuliang Chen,et al.  A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation , 2007, SIAM J. Sci. Comput..

[16]  Dan Crisan,et al.  Solving backward stochastic differential equations using the cubature method: Application to nonlinear pricing , 2010 .

[17]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[18]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..