Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology

Single-photon avalanche photodiodes (SPADs) operating in Geiger mode offer exceptional time resolution and optical sensitivity. Implementation in modern nanometer-scale complementary metal-oxide-semiconductor (CMOS) technologies to create dense high-resolution arrays requires a device structure that is scaleable down to a few micrometers. A family of three SPAD structures with sub-100-Hz mean dark count rate (DCR) is proposed in 130-nm CMOS image sensor technology. Based on a novel retrograde buried n-well guard ring, these detectors are shown to readily scale from 32 to 2 μm with improving DCR, jitter, and yield. One of these detectors is compatible with standard triple-well digital CMOS, and the others bring the first low-DCR realizations at the 130-nm node of shallow-trench-isolation-bounded and enhancement SPADs.

[1]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  A. Lacaita,et al.  Physics and numerical simulation of single photon avalanche diodes , 1997 .

[3]  M. Gersbach,et al.  A 128 $\times$ 128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array , 2008, IEEE Journal of Solid-State Circuits.

[4]  Steve Collins,et al.  A flexible compact readout circuit for SPAD arrays , 2010, NanoScience + Engineering.

[5]  L. Grant,et al.  Reduction of Band-to-band Tunneling in Deep-submicron CMOS Single Photon Avalanche Photodiodes , 2009 .

[6]  Edoardo Charbon,et al.  A gamma, x-ray and high energy proton radiation-tolerant CIS for space applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  Edoardo Charbon,et al.  A 32×32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[8]  A. Lacaita,et al.  New silicon epitaxial avalanche diode for single-photon timing at room temperature , 1988 .

[9]  R. Lecomte,et al.  Scintillation Detection with Large-Area Reach-Through Avalanche Photodiodes , 1984, IEEE Transactions on Nuclear Science.

[10]  Silvano Donati,et al.  Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits. , 2007, Optics express.

[11]  Robert K. Henderson,et al.  A 3×3, 5µm pitch, 3-transistor single photon avalanche diode array with integrated 11V bias generation in 90nm CMOS technology , 2010, 2010 International Electron Devices Meeting.

[12]  T. Frach,et al.  The digital silicon photomultiplier — Principle of operation and intrinsic detector performance , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[13]  Franco Zappa,et al.  A probe detector for defectivity assessment in p-n junctions , 2000 .

[14]  E. Charbon,et al.  Single-Photon Synchronous Detection , 2009, IEEE Journal of Solid-State Circuits.

[15]  Edoardo Charbon,et al.  A 128x128 Single-Photon Imager with on-Chip Column-Level 97ps 10bit Time-to-Digital-Converter Array , 2008, ISSCC 2008.

[16]  Andrea L. Lacaita,et al.  Double epitaxy improves single-photon avalanche diode performance , 1989 .

[17]  P.-A. Besse,et al.  Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology , 2003 .

[18]  David Stoppa,et al.  A SPAD-based pixel linear array for high-speed time-gated fluorescence lifetime imaging , 2009, 2009 Proceedings of ESSCIRC.

[19]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .

[20]  R. J. McIntyre,et al.  Theory of Microplasma Instability in Silicon , 1961 .

[21]  D. Stoppa,et al.  Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time , 2007, ESSDERC 2007 - 37th European Solid State Device Research Conference.

[22]  E. Charbon,et al.  A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  R. Henderson,et al.  Edinburgh Research Explorer A Low Dark Count Single Photon Avalanche Diode Structure Compatible with Standard Nanometer Scale CMOS Technology , 2009 .

[24]  A. Rochas,et al.  A Geiger Mode Avalanche Photodiode Fabricated in a Conventional CMOS Technology , 2001, 31st European Solid-State Device Research Conference.

[25]  A. Andreou,et al.  Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm 1.8 V CMOS process , 2008 .

[26]  S. Esener,et al.  STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology , 2006, IEEE Electron Device Letters.

[27]  J. Vaillant,et al.  Fully Optimized Cu based process with dedicated cavity etch for 1.75μm and 1.45μm pixel pitch CMOS Image Sensors , 2006, 2006 International Electron Devices Meeting.

[28]  Alberto Tosi,et al.  Single-photon camera for high-sensitivity high-speed applications , 2010, Electronic Imaging.

[29]  M. Deen,et al.  Fully Integrated Single Photon Avalanche Diode Detector in Standard CMOS 0.18- $\mu$m Technology , 2008, IEEE Transactions on Electron Devices.

[30]  J. Richardson,et al.  A 2um diameter, 9hz dark count, single photon avalanche diode in 130nm cmos technology , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[31]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[32]  E. Charbon,et al.  A low-noise single-photon detector implemented in a 130 nm CMOS imaging process , 2009, ESSDERC 2009.