Structure-activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction

[1]  M. Willinger,et al.  2D Metal Organic Framework‐Graphitic Carbon Nanocomposites as Precursors for High‐Performance O2‐Evolution Electrocatalysts , 2018, Advanced Energy Materials.

[2]  L. Gu,et al.  Highly Efficient CO2 Electroreduction on ZnN4 -based Single-Atom Catalyst. , 2018, Angewandte Chemie.

[3]  Licheng Liu,et al.  Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO2 to CO. , 2018, ChemSusChem.

[4]  F. Kapteijn,et al.  Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction. , 2018, ACS applied materials & interfaces.

[5]  D. Cullen,et al.  Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts , 2018 .

[6]  G. Centi,et al.  Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon , 2018, Nature Communications.

[7]  Min Jeong Kim,et al.  Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N-X/C active sites for oxygen reduction reaction in fuel cells , 2018 .

[8]  Yu Huang,et al.  General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities , 2018, Nature Catalysis.

[9]  F. Kapteijn,et al.  Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes , 2018 .

[10]  F. Kapteijn,et al.  Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework , 2017, Nature Communications.

[11]  Stefan Kaskel,et al.  Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 , 2017, Nature Communications.

[12]  Tao Zhang,et al.  Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C-H Bond. , 2017, Journal of the American Chemical Society.

[13]  F. Kapteijn,et al.  Metal–Organic Framework Mediated Cobalt/Nitrogen‐Doped Carbon Hybrids as Efficient and Chemoselective Catalysts for the Hydrogenation of Nitroarenes , 2017 .

[14]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[15]  S. Liao,et al.  Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. , 2017, ACS applied materials & interfaces.

[16]  M. Fontecave,et al.  Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study , 2017 .

[17]  Jie Tian,et al.  Metal–Organic‐Framework‐Derived Mesoporous Carbon Nanospheres Containing Porphyrin‐Like Metal Centers for Conformal Phototherapy , 2016, Advanced materials.

[18]  Wilson A. Smith,et al.  Efficient Electrochemical Production of Syngas from CO2 and H2O by using a Nanostructured Ag/g‐C3N4 Catalyst , 2016 .

[19]  Yadong Li,et al.  Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. , 2016, Angewandte Chemie.

[20]  Wilson A. Smith,et al.  Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts. , 2016, Angewandte Chemie.

[21]  Ming Ma,et al.  Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. , 2016, Angewandte Chemie.

[22]  F. Kapteijn,et al.  Effect of pretreatment atmosphere on the activity and selectivity of Co/mesoHZSM-5 for Fischer–Tropsch synthesis , 2016 .

[23]  P. Ajayan,et al.  Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. , 2015, Angewandte Chemie.

[24]  P. Ajayan,et al.  Atomic cobalt on nitrogen-doped graphene for hydrogen generation , 2015, Nature Communications.

[25]  C. Pollock,et al.  Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy. , 2015, Accounts of chemical research.

[26]  Frédéric Jaouen,et al.  Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. , 2015, Nature materials.

[27]  Shuhong Yu,et al.  From Bimetallic Metal‐Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis , 2015, Advanced materials.

[28]  S. Back,et al.  Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO , 2015 .

[29]  Jian Liu,et al.  Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. , 2015, Journal of the American Chemical Society.

[30]  P. Glatzel,et al.  Valence to Core X‐ray Emission Spectroscopy , 2014, Advanced materials.

[31]  Shengli Chen,et al.  Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O2 on Fe/N-Doped Graphene , 2014 .

[32]  Matthias Bauer,et al.  HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? , 2014, Physical chemistry chemical physics : PCCP.

[33]  Z. Su,et al.  Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. , 2014, Nanoscale.

[34]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[35]  Kristian Sommer Thygesen,et al.  Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene , 2013 .

[36]  Yuichiro Kamachi,et al.  Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. , 2013, Chemical communications.

[37]  J. Savéant,et al.  A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst , 2012, Science.

[38]  A. Frenkel,et al.  Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. , 2012, Angewandte Chemie.

[39]  Frank Neese,et al.  The ORCA program system , 2012 .

[40]  Frank Neese,et al.  X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor , 2011, Science.

[41]  Thomas Schaub,et al.  A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. , 2011, Angewandte Chemie.

[42]  C. Pollock,et al.  Valence-to-core X-ray emission spectroscopy: a sensitive probe of the nature of a bound ligand. , 2011, Journal of the American Chemical Society.

[43]  Frank Neese,et al.  Probing valence orbital composition with iron Kbeta X-ray emission spectroscopy. , 2010, Journal of the American Chemical Society.

[44]  Frank Neese,et al.  Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra. , 2010, Inorganic chemistry.

[45]  V. A. Safonov,et al.  Cr local environment by valence-to-core X-ray emission spectroscopy , 2009 .

[46]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[47]  V. A. Safonov,et al.  Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. , 2006, The journal of physical chemistry. B.

[48]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[49]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[50]  H. Frei,et al.  Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy , 2000 .

[51]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[52]  Uwe Bergmann,et al.  Chemical dependence of interatomic X-ray transition energies and intensities – a study of Mn Kβ″ and Kβ2, 5 spectra , 1999 .

[53]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[54]  F. Illas,et al.  Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials , 1996 .

[55]  A. Bianconi,et al.  COORDINATION GEOMETRY OF TRANSITION METAL IONS IN DILUTE SOLUTIONS BY XANES , 1986 .

[56]  T. Yokoyama,et al.  Polarized Cu K-edge XANES of square planar CuCl42− ion. Experimental and theoretical evidence for shake-down phenomena , 1984 .

[57]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.