Multimedia Information Networks in Social Media

The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

[1]  Fabian M. Suchanek,et al.  Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia , 2007 .

[2]  Jiebo Luo,et al.  Geo-location inference from image content and user tags , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[3]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[4]  Oren Kurland,et al.  PageRank without hyperlinks: structural re-ranking using links induced by language models , 2005, SIGIR '05.

[5]  Daphna Weinshall,et al.  Exploiting Object Hierarchy: Combining Models from Different Category Levels , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[6]  Wei-Ying Ma,et al.  Annotating Images by Mining Image Search Results , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jiebo Luo,et al.  Annotating collections of photos using hierarchical event and scene models , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Zoubin Ghahramani,et al.  Semi-supervised learning : from Gaussian fields to Gaussian processes , 2003 .

[9]  Shuicheng Yan,et al.  Inferring semantic concepts from community-contributed images and noisy tags , 2009, ACM Multimedia.

[10]  Jiebo Luo,et al.  Event recognition: viewing the world with a third eye , 2008, ACM Multimedia.

[11]  Xing Xie,et al.  Mining city landmarks from blogs by graph modeling , 2009, ACM Multimedia.

[12]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[13]  Rong Yan,et al.  Semantic concept-based query expansion and re-ranking for multimedia retrieval , 2007, ACM Multimedia.

[14]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[15]  Liang-Tien Chia,et al.  Wikipedia2Onto --- Adding Wikipedia Semantics to Web Image Retrieval , 2009 .

[16]  Jiebo Luo,et al.  Mining compositional features for boosting , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Mor Naaman,et al.  Context data in geo-referenced digital photo collections , 2004, MULTIMEDIA '04.

[18]  Meng Wang,et al.  Visual query suggestion , 2009, ACM Multimedia.

[19]  Yuli Gao,et al.  Fast near duplicate detection for personal image collections , 2009, MM '09.

[20]  Jiebo Luo,et al.  A WORLDWIDE TOURISM RECOMMENDATION SYSTEM BASED ON GEOTAGGED WEB PHOTOS , 2010 .

[21]  Mor Naaman,et al.  Generating diverse and representative image search results for landmarks , 2008, WWW.

[22]  Jianchang Mao,et al.  Towards the Semantic Web: Collaborative Tag Suggestions , 2006 .

[23]  Yanxi Liu,et al.  Detecting and matching repeated patterns for automatic geo-tagging in urban environments , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[25]  Alexei A. Efros,et al.  IM2GPS: estimating geographic information from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[27]  Frank McSherry,et al.  A uniform approach to accelerated PageRank computation , 2005, WWW '05.

[28]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[29]  Gene H. Golub,et al.  Exploiting the Block Structure of the Web for Computing , 2003 .

[30]  Deng Cai,et al.  Topic modeling with network regularization , 2008, WWW.

[31]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[32]  Wei-Ying Ma,et al.  Bipartite graph reinforcement model for web image annotation , 2007, ACM Multimedia.

[33]  Andreas Paepcke,et al.  Time as essence for photo browsing through personal digital libraries , 2002, JCDL '02.

[34]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[35]  Andreas Girgensohn,et al.  Temporal event clustering for digital photo collections , 2003, ACM Multimedia.

[36]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[37]  Peng Wu,et al.  Close & closer: social cluster and closeness from photo collections , 2009, MM '09.

[38]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[39]  Jiebo Luo,et al.  Inferring generic activities and events from image content and bags of geo-tags , 2008, CIVR '08.

[40]  Rong Yan,et al.  Cross-domain video concept detection using adaptive svms , 2007, ACM Multimedia.

[41]  Jiebo Luo,et al.  RankCompete: simultaneous ranking and clustering of web photos , 2010, WWW '10.

[42]  Wei-Ying Ma,et al.  VIPS: a Vision-based Page Segmentation Algorithm , 2003 .

[43]  N. Littlestone Mistake bounds and logarithmic linear-threshold learning algorithms , 1990 .

[44]  Jiebo Luo,et al.  Enhancing semantic and geographic annotation of web images via logistic canonical correlation regression , 2009, ACM Multimedia.

[45]  Alexander Sibiryakov Photo-collection representation based on viewpoint clustering , 2007, SPIE/COS Photonics Asia.

[46]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[47]  Andreas E. Savakis,et al.  Automatic image event segmentation and quality screening for albuming applications , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[48]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[49]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[50]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[51]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[52]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[53]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[54]  Ellen M. Vdorhees,et al.  The cluster hypothesis revisited , 1985, SIGIR '85.

[55]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[56]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..

[57]  Ivor W. Tsang,et al.  Using large-scale web data to facilitate textual query based retrieval of consumer photos , 2009, MM '09.

[58]  Andreas E. Savakis,et al.  Evaluation of image appeal in consumer photography , 2000, Electronic Imaging.

[59]  Wei-Ta Chu,et al.  Automatic selection of representative photo and smart thumbnailing using near-duplicate detection , 2008, ACM Multimedia.

[60]  Mark W. Schmidt,et al.  Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.

[61]  Jiebo Luo,et al.  Aworldwide tourism recommendation system based on geotaggedweb photos , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[62]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[63]  Yanmei Chai,et al.  OntoAlbum: An Ontology Based Digital Photo Management System , 2008, ICIAR.

[64]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[65]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[66]  Shumeet Baluja,et al.  Pagerank for product image search , 2008, WWW.

[67]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[68]  Gilad Mishne,et al.  AutoTag: a collaborative approach to automated tag assignment for weblog posts , 2006, WWW '06.

[69]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[70]  Mor Naaman,et al.  Leveraging geo-referenced digital photographs , 2005 .

[71]  Jianping Fan,et al.  Hierarchical classification for automatic image annotation , 2007, SIGIR.

[72]  Mor Naaman,et al.  Automatic organization for digital photographs with geographic coordinates , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[73]  LinLin Shen,et al.  Face authentication test on the BANCA database , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[74]  Hector Garcia-Molina,et al.  Combating Web Spam with TrustRank , 2004, VLDB.

[75]  Thomas Hofmann,et al.  Hierarchical document categorization with support vector machines , 2004, CIKM '04.

[76]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[77]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[78]  Tsuhan Chen,et al.  Using Group Prior to Identify People in Consumer Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[79]  Manfred K. Warmuth,et al.  Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension , 2008 .

[80]  Tie-Yan Liu,et al.  BrowseRank: letting web users vote for page importance , 2008, SIGIR '08.

[81]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[82]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[83]  Natasha Gelfand,et al.  Visual summaries of popular landmarks from community photo collections , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[84]  Arkadiusz Paterek,et al.  Improving regularized singular value decomposition for collaborative filtering , 2007 .

[85]  Nenghai Yu,et al.  Annotating personal albums via web mining , 2008, ACM Multimedia.

[86]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[87]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[88]  Luc Van Gool,et al.  World-scale mining of objects and events from community photo collections , 2008, CIVR '08.

[89]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[90]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[91]  Krishna P. Gummadi,et al.  Growth of the flickr social network , 2008, WOSN '08.

[92]  Xian-Sheng Hua,et al.  Two-Dimensional Multilabel Active Learning with an Efficient Online Adaptation Model for Image Classification , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Xian-Sheng Hua,et al.  Learning semantic distance from community-tagged media collection , 2009, MM '09.

[95]  Yi Wu,et al.  Ontology-based multi-classification learning for video concept detection , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[96]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[97]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[98]  Mor Naaman,et al.  How flickr helps us make sense of the world: context and content in community-contributed media collections , 2007, ACM Multimedia.

[99]  Jun Xiao,et al.  Face based image navigation and search , 2009, MM '09.

[100]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[101]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[102]  Yang Song,et al.  Tour the world: Building a web-scale landmark recognition engine , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[103]  Krystyna K. Matusiak Towards user-centered indexing in digital image collections , 2006, OCLC Syst. Serv..

[104]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[105]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[106]  Jiebo Luo,et al.  Annotating photo collections by label propagation according to multiple similarity cues , 2008, ACM Multimedia.

[107]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[108]  Ellen M. Vdorhees The cluster hypothesis revisited , 1985, SIGIR 1985.

[109]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[110]  David A. Forsyth,et al.  Utility data annotation with Amazon Mechanical Turk , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[111]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[112]  Yida Wang,et al.  Exploring traversal strategy for web forum crawling , 2008, SIGIR '08.

[113]  Abigail Sellen,et al.  Understanding photowork , 2006, CHI.

[114]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[115]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[116]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[117]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[118]  Jiebo Luo,et al.  Leveraging probabilistic season and location context models for scene understanding , 2008, CIVR '08.

[119]  Taher H. Haveliwala Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search , 2003, IEEE Trans. Knowl. Data Eng..

[120]  Shih-Fu Chang,et al.  Detecting image near-duplicate by stochastic attributed relational graph matching with learning , 2004, MULTIMEDIA '04.

[121]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.