Multivariate Social Network Visual Analytics

Social networks are one of the most common type of multivariate networks. In this chapter, we describe the data characteristics of multivariate social networks and various types of tasks for understanding and analyzing such networks. We also present a set of example visual analytic technologies that are developed to support different types of social network analysis. Finally, we discuss remaining challenges and future research directions.

[1]  Katherine Faust,et al.  Triadic configurations in limited choice sociometric networks: Empirical and theoretical results , 2008, Soc. Networks.

[2]  Kwan-Liu Ma,et al.  Clustering, Visualizing, and Navigating for Large Dynamic Graphs , 2012, GD.

[3]  Liang Gou,et al.  TreeNetViz: Revealing Patterns of Networks over Tree Structures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Ulrik Brandes,et al.  An Experimental Study on Distance-Based Graph Drawing , 2009, GD.

[5]  Jean-Daniel Fekete,et al.  Author Manuscript, Published in "sigchi Conference on Human Factors in Computing Systems Topology-aware Navigation in Large Networks , 2022 .

[6]  Kwan-Liu Ma,et al.  Rapid Graph Layout Using Space Filling Curves , 2008, IEEE Transactions on Visualization and Computer Graphics.

[7]  Andreas Noack,et al.  Modularity clustering is force-directed layout , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Y. Koren,et al.  Dig-CoLa: directed graph layout through constrained energy minimization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[9]  Kwan-Liu Ma,et al.  Design Considerations for Optimizing Storyline Visualizations , 2012, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[11]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Hui Xiong,et al.  Topic formation and development: a core-group evolving process , 2013, World Wide Web.

[13]  Mohammad Al Hasan,et al.  A Survey of Link Prediction in Social Networks , 2011, Social Network Data Analytics.

[14]  Raymond Lister After the gold rush: toward sustainable scholarship in computing , 2008, ACE '08.

[15]  Padhraic Smyth,et al.  Algorithms for estimating relative importance in networks , 2003, KDD '03.

[16]  Jeffrey Nichols,et al.  Recommending targeted strangers from whom to solicit information on social media , 2013, IUI '13.

[17]  Leon Peeters,et al.  Algorithms for Centrality Indices , 2004, Network Analysis.

[18]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[19]  Michael Burch,et al.  Parallel Edge Splatting for Scalable Dynamic Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[20]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[21]  Mao Lin Huang,et al.  A Fast Algorithm for Balanced Graph Clustering , 2007, 2007 11th International Conference Information Visualization (IV '07).

[22]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[23]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[24]  Kwan-Liu Ma,et al.  Visual Reasoning about Social Networks Using Centrality Sensitivity , 2012, IEEE Transactions on Visualization and Computer Graphics.

[25]  Liang Gou,et al.  SocialNetSense: Supporting sensemaking of social and structural features in networks with interactive visualization , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[26]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[27]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[28]  Kwan-Liu Ma,et al.  A Treemap Based Method for Rapid Layout of Large Graphs , 2008, 2008 IEEE Pacific Visualization Symposium.

[29]  Kwan-Liu Ma,et al.  Egocentric storylines for visual analysis of large dynamic graphs , 2013, 2013 IEEE International Conference on Big Data.

[30]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[31]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[32]  Jeffrey Nichols,et al.  Question routing to user communities , 2013, CIKM.

[33]  Yifan Hu,et al.  Embedding, clustering and coloring for dynamic maps , 2012, 2012 IEEE Pacific Visualization Symposium.

[34]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  L. Freeman,et al.  The Development of Social Network Analysis: A Study in the Sociology of Science , 2005 .

[36]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[37]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[38]  A.V.Bakshi,et al.  Network Analysis , 2005, Operations Research.

[39]  Charu C. Aggarwal,et al.  Social Network Data Analytics , 2011 .

[40]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Sara B. Soderstrom,et al.  Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms , 2010 .

[42]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[43]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[45]  Jennifer Golbeck,et al.  Predicting Personality from Twitter , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[46]  Wenpin Tsai,et al.  Social networks and organizations , 2003 .

[47]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[48]  Wei Zhang,et al.  Finding someone in my social directory whom i do not fully remember or barely know , 2012, IUI '12.

[49]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[50]  Michael Jünger,et al.  An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs , 2005, GD.

[51]  Stuart K. Card,et al.  The cost structure of sensemaking , 1993, INTERCHI.

[52]  Michelle X. Zhou,et al.  Who is Doing What and When: Social Map-Based Recommendation for Content-Centric Social Web Sites , 2011, TIST.

[53]  Ulrik Brandes,et al.  Visualization methods for longitudinal social networks and stochastic actor-oriented modeling , 2012, Soc. Networks.

[54]  Kwan-Liu Ma,et al.  Visual Recommendations for Network Navigation , 2011, Comput. Graph. Forum.

[55]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..