Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light.

A Kuznetsov-Ma soliton that exhibits an unusual pulsating dynamics has attracted particular attention in hydrodynamics and plasma physics in the context of understanding nonlinear coherent phenomena. Here, we demonstrate theoretically the formation of a novel form of Kuznetsov-Ma soliton in a microfabricated optomechanical array, where both photonic and phononic evolutionary dynamics exhibit periodic structure and coherent localized behavior enabled by radiation-pressure coupling of optical fields and mechanical oscillations, which is a manifestation of the unique property of optomechanical systems. Numerical calculations of the optomechanical dynamics show an excellent agreement with this theory. In addition to providing insight into optomechanical nonlinearity, optomechanical Kuznetsov-Ma soliton dynamics fundamentally broadens the regime of cavity optomechanics and may find applications in on-chip manipulation of light propagation.

[1]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[2]  Florian Marquardt,et al.  Collective dynamics in optomechanical arrays , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[3]  송원영,et al.  27 , 1910, Georgia O'Keeffe.

[4]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[5]  Hao Xiong,et al.  Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. , 2013, Optics letters.

[6]  A. Clerk,et al.  Photon propagation in a one-dimensional optomechanical lattice , 2014, 1401.0958.

[7]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[8]  Ying Wu,et al.  Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency , 2016 .

[9]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  P. Domokos,et al.  Dynamical scattering models in optomechanics: going beyond the ‘coupled cavities’ model , 2012, 1204.5301.

[11]  Zach DeVito,et al.  Opt , 2017 .

[12]  N. Akhmediev,et al.  Exact first-order solutions of the nonlinear Schrödinger equation , 1987 .

[13]  N. Hoffmann,et al.  Hydrodynamic supercontinuum. , 2013, Physical review letters.

[14]  Oskar Painter,et al.  Two-dimensional phononic-photonic band gap optomechanical crystal cavity. , 2014, Physical review letters.

[15]  Hao Xiong,et al.  Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation. , 2017, Optics letters.

[16]  Hao Xiong,et al.  Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions , 2015 .

[17]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[18]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[19]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[20]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[21]  O. Painter,et al.  Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. , 2010, Optics express.

[22]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[23]  Cheng Jiang,et al.  Electromagnetically induced transparency and slow light in two-mode optomechanics. , 2013, Optics express.

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  Ying Wu,et al.  Solitons in optomechanical arrays. , 2016, Optics letters.

[26]  F. Mitschke,et al.  Solitons in lossy fibers , 2007 .

[27]  V E Zakharov,et al.  Nonlinear stage of modulation instability. , 2012, Physical review letters.

[28]  K. Srinivasan,et al.  Si3N4 optomechanical crystals in the resolved-sideband regime , 2013, 1311.6325.

[29]  S. Girvin,et al.  Signatures of nonlinear cavity optomechanics in the weak coupling regime. , 2013, Physical review letters.

[30]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[31]  J. Dudley,et al.  Hydrodynamics of periodic breathers , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  A. J. Sievers,et al.  Colloquium: Nonlinear energy localization and its manipulation in micromechanical oscillator arrays , 2006 .

[33]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[34]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[35]  A. Mussot,et al.  Fermi-Pasta-Ulam Recurrence in Nonlinear Fiber Optics: The Role of Reversible and Irreversible Losses , 2014 .

[36]  O. Painter,et al.  Slot-mode-coupled optomechanical crystals. , 2012, Optics express.

[37]  Radiation pressure induced difference-sideband generation beyond linearized description , 2016, 1610.02664.

[38]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[39]  Helmut Ritsch,et al.  Mechanical effects of light in optical resonators , 2003 .

[40]  V. Zakharov,et al.  Superregular breathers in optics and hydrodynamics: Omnipresent modulation instability beyond simple periodicity , 2015 .

[41]  Hasegawa,et al.  Guiding-center soliton. , 1991, Physical review letters.

[42]  Hao Xiong,et al.  Higher-order sidebands in optomechanically induced transparency , 2012 .

[43]  Ying Wu,et al.  Optomechanically induced sum sideband generation. , 2016, Optics express.

[44]  André Xuereb,et al.  Strong coupling and long-range collective interactions in optomechanical arrays. , 2012, Physical review letters.

[45]  Hao Xiong,et al.  Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics , 2017 .

[46]  A. Kronwald,et al.  Optomechanically induced transparency in the nonlinear quantum regime. , 2013, Physical review letters.

[47]  Gino Biondini,et al.  Universal Nature of the Nonlinear Stage of Modulational Instability. , 2015, Physical review letters.

[48]  C T Stansberg,et al.  Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. , 2009, Physical review letters.

[49]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .