SLM reconfiguration time in optically interconnected packet switch

Optical switches based on liquid crystal SLM (Spatial Light Modulators) have traditionally been considered unsuitable for packet switching due to slow reconfiguration speed. In this paper we investigate the constraint of reconfiguration time in an optically interconnected packet switch. A system architecture based on the established knockout principle and input/output buffers is simulated with self-similar traffic patterns and packet length statistics obtained from NLANR. Analysis includes packet delay distribution, queue length growth. A physical realisation of the system will use VCSEL arrays, detector arrays and multi-mode ribbon fibre. Data granularity of the system is chosen to match the specification of modern line cards used in routers. It is found that a reconfiguration time in the order of micro seconds is sufficient for an acceptable delay and loss rate. Relationships between required reconfiguration time and system parameters are established.