Differential Evolutionary Superpixel Segmentation

Superpixel segmentation has been of increasing importance in many computer vision applications recently. To handle the problem, most state-of-the-art algorithms either adopt a local color variance model or a local optimization algorithm. This paper develops a new approach, named differential evolutionary superpixels, which is able to optimize the global properties of segmentation by means of a global optimizer. We design a comprehensive objective function aggregating within-superpixel error, boundary gradient, and a regularization term. Minimizing the within-superpixel error enforces the homogeneity of superpixels. In addition, the introduction of boundary gradient drives the superpixel boundaries to capture the natural image boundaries, so as to make each superpixel overlaps with a single object. The regularizer further encourages producing similarly sized superpixels that are friendly to human vision. The optimization is then accomplished by a powerful global optimizer—differential evolution. The algorithm constantly evolves the superpixels by mimicking the process of natural evolution, while using a linear complexity to the image size. Experimental results and comparisons with eleven state-of-the-art peer algorithms verify the promising performance of our algorithm.

[1]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Huchuan Lu,et al.  Inner and Inter Label Propagation: Salient Object Detection in the Wild , 2015, IEEE Transactions on Image Processing.

[3]  Hussein A. Abbass,et al.  Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[4]  Xuelong Li,et al.  Video Supervoxels Using Partially Absorbing Random Walks , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Ling Shao,et al.  Sub-Markov Random Walk for Image Segmentation , 2016, IEEE Transactions on Image Processing.

[6]  Swagatam Das,et al.  Multilevel Image Thresholding Based on 2D Histogram and Maximum Tsallis Entropy— A Differential Evolution Approach , 2013, IEEE Transactions on Image Processing.

[7]  Yicong Zhou,et al.  A superpixel segmentation algorithm based on differential evolution , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[8]  Yue Gao,et al.  Representative Discovery of Structure Cues for Weakly-Supervised Image Segmentation , 2014, IEEE Transactions on Multimedia.

[9]  Tapabrata Ray,et al.  Evolutionary Algorithms for Dynamic Economic Dispatch Problems , 2016, IEEE Transactions on Power Systems.

[10]  Richard S. Zemel,et al.  Learning and Incorporating Top-Down Cues in Image Segmentation , 2006, ECCV.

[11]  Ling Shao,et al.  Higher Order Energies for Image Segmentation , 2017, IEEE Transactions on Image Processing.

[12]  James M. Rehg,et al.  The Secrets of Salient Object Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[14]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[15]  Majid Komeili,et al.  Local Feature Selection for Data Classification , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Ling Shao,et al.  Interactive Cosegmentation Using Global and Local Energy Optimization , 2015, IEEE Transactions on Image Processing.

[17]  Meng Jian,et al.  Interactive Image Segmentation Using Adaptive Constraint Propagation , 2016, IEEE Transactions on Image Processing.

[18]  F. Meyer,et al.  Color image segmentation , 1992 .

[19]  Umar Mohammed,et al.  Superpixel lattices , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Svetlana Lazebnik,et al.  Superparsing - Scalable Nonparametric Image Parsing with Superpixels , 2010, International Journal of Computer Vision.

[23]  Rama Chellappa,et al.  Entropy rate superpixel segmentation , 2011, CVPR 2011.

[24]  Ajith Abraham,et al.  On stability and convergence of the population-dynamics in differential evolution , 2009, AI Commun..

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ujjwal Maulik,et al.  Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Zhengqin Li,et al.  Superpixel segmentation using Linear Spectral Clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  David Cárdenas-Peña,et al.  Waterpixels , 2015, IEEE Transactions on Image Processing.

[29]  Yuxia Wang,et al.  Superpixel tracking via graph-based semi-supervised SVM and supervised saliency detection , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[30]  Huchuan Lu,et al.  Co-Bootstrapping Saliency , 2017, IEEE Transactions on Image Processing.

[31]  Peer Neubert,et al.  Superpixel Benchmark and Comparison , 2012 .

[32]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[33]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Xuelong Li,et al.  Robust Video Object Cosegmentation , 2015, IEEE Transactions on Image Processing.

[35]  Jun Zhang,et al.  Differential Evolution with an Evolution Path: A DEEP Evolutionary Algorithm , 2015, IEEE Transactions on Cybernetics.

[36]  Zhengqin Li,et al.  Linear Spectral Clustering Superpixel , 2017, IEEE Transactions on Image Processing.

[37]  Xuelong Li,et al.  Interactive Segmentation Using Constrained Laplacian Optimization , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[38]  Jian Sun,et al.  Saliency Optimization from Robust Background Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Sabine Süsstrunk,et al.  Superpixels and Polygons Using Simple Non-iterative Clustering , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Woei-Chyn Chu,et al.  Performance measure characterization for evaluating neuroimage segmentation algorithms , 2009, NeuroImage.

[41]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[42]  Grantham Pang,et al.  A Modified Differential Evolution With Heuristic Algorithm for Nonconvex Optimization on Sensor Network Localization , 2016, IEEE Transactions on Vehicular Technology.

[43]  Xuelong Li,et al.  Superpixel Optimization Using Higher Order Energy , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[44]  Ronald M. Summers,et al.  A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling , 2015, IEEE Transactions on Image Processing.

[45]  Ruhul A. Sarker,et al.  Constraint Consensus Mutation-Based Differential Evolution for Constrained Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[46]  Ling Guan,et al.  Monocular Human Motion Tracking by Using DE-MC Particle Filter , 2013, IEEE Transactions on Image Processing.

[47]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[48]  Youjie Zhou,et al.  Multiscale Superpixels and Supervoxels Based on Hierarchical Edge-Weighted Centroidal Voronoi Tessellation , 2015, IEEE Transactions on Image Processing.

[49]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[50]  Luis E. Ortiz,et al.  Retrieving Similar Styles to Parse Clothing , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Xuelong Li,et al.  Lazy Random Walks for Superpixel Segmentation , 2014, IEEE Transactions on Image Processing.

[52]  Ling Shao,et al.  Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm , 2016, IEEE Transactions on Image Processing.

[53]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[54]  Luc Van Gool,et al.  SEEDS: Superpixels Extracted Via Energy-Driven Sampling , 2012, International Journal of Computer Vision.

[55]  Jinghuai Gao,et al.  Multimutation Differential Evolution Algorithm and Its Application to Seismic Inversion , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Ling Shao,et al.  A modified adaptive differential evolution algorithm for color image segmentation , 2014, Knowledge and Information Systems.

[58]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.