An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions

AbstractWe prove an asymptotically tight bound (asymptotic with respect to the number of polynomials for fixed degrees and number of variables) on the number of semi-algebraically connected components of the realizations of all realizable sign conditions of a family of real polynomials. More precisely, we prove that the number of semi-algebraically connected components of the realizations of all realizable sign conditions of a family of s polynomials in R[X1, …,Xk] whose degrees are at most d is bounded by $$ \frac{{(2d)^k }} {{k!}}s^k + O(s^{k - 1} ). $$ This improves the best upper bound known previously which was $$ \frac{1} {2}\frac{{(8d)^k }} {{k!}}s^k + O(s^{k - 1} ). $$ The new bound matches asymptotically the lower bound obtained for families of polynomials each of which is a product of generic polynomials of degree one.

[1]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[2]  Murali K. Ganapathy,et al.  On the number of zero-patterns of a sequence of polynomials , 2001 .

[3]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[4]  J. C. Moore,et al.  Homology theory for locally compact spaces. , 1960 .

[5]  C. T. C. Wall,et al.  GÉOMÉTRIE ALGÉBRIQUE RÉELLE (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 12) , 1989 .

[6]  J. Milnor On the Betti numbers of real varieties , 1964 .

[7]  K. K. Karchyauskas Homotopy properties of algebraic sets , 1982 .

[8]  Robert Hardt,et al.  Semi-Algebraic Local-Triviality in Semi-Algebraic Mappings , 1980 .

[9]  S. Basu,et al.  On the number of cells defined by a family of polynomials on a variety , 1996 .

[10]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[11]  William Fulton,et al.  Intersection theory, Second Edition , 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[12]  R. Narasimhan,et al.  On the homology groups of Stein spaces , 1967 .

[13]  O. Ya. Viro,et al.  Homology and Cohomology , 2004 .

[14]  N. Alon Tools from higher algebra , 1996 .

[15]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[16]  Imre Brny LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) By JI MATOUEK: 481 pp., 31.50 (US$39.95), ISBN 0-387-95374-4 (Springer, New York, 2002). , 2003 .

[17]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[18]  R. Pollack,et al.  There are asymptotically far fewer polytopes than we thought , 1986 .

[19]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .

[20]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[21]  S. Basu,et al.  On the Betti numbers of sign conditions , 2004 .

[22]  Juan Sabia,et al.  On the Number of Sets Definable by Polynomials , 2000 .

[23]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .