Adenosine triphosphate-sensitive K+ channels mediate postcardioplegia coronary hyperemia.

[1]  F. Sellke,et al.  Myogenic reactivity of coronary resistance arteries after cardiopulmonary bypass and hyperkalemic cardioplegia. , 1995, Circulation.

[2]  F. Sellke,et al.  Adrenergic regulation of coronary microcirculation after extracorporeal circulation and crystalloid cardioplegia. , 1994, The American journal of physiology.

[3]  T. Kitazono,et al.  ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia. , 1994, Circulation research.

[4]  R. Loutzenhiser,et al.  Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels. , 1994, Circulation research.

[5]  F. Sellke,et al.  Epicardial and Endocardial Coronary Microvascular Responses: Effects of Ischemia–Reperfusion , 1994, Journal of cardiovascular pharmacology.

[6]  F. Sellke,et al.  Coronary Endothelial Injury After Cardiopulmonary Bypass and Ischemic Cardioplegia Is Mediated by Oxygen‐Derived Free Radicals , 1993, Circulation.

[7]  A. Takeshita,et al.  Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. , 1993, Circulation research.

[8]  R. Bache,et al.  Role of K+ATP channels in coronary vasodilation during exercise. , 1993, Circulation.

[9]  A. Takeshita,et al.  Glibenclamide decreases basal coronary blood flow in anesthetized dogs. , 1992, The American journal of physiology.

[10]  R. Balaban,et al.  ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. , 1992, The American journal of physiology.

[11]  A. Kitabatake,et al.  Lack of Myocardial Perfusion Immediately After Successful Thrombolysis: A Predictor of Poor Recovery of Left Ventricular Function in Anterior Myocardial Infarction , 1992, Circulation.

[12]  D. Harrison,et al.  Vasomotor properties of porcine endocardial and epicardial microvessels. , 1992, The American journal of physiology.

[13]  L. Clapp,et al.  ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. , 1992, The American journal of physiology.

[14]  W. Lederer,et al.  Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. , 1991, The American journal of physiology.

[15]  P. Landais,et al.  Comparison of different types of cardioplegia and reperfusion on myocardial metabolism and free radical activity. , 1991, Circulation.

[16]  E. Keung,et al.  Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. , 1991, The Journal of clinical investigation.

[17]  K. Dellsperger,et al.  Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. , 1991, Circulation research.

[18]  J. Daut,et al.  Hypoxic vasodilatation in isolated, perfused guinea‐pig heart: an analysis of the underlying mechanisms. , 1991, The Journal of physiology.

[19]  P. Ouyang,et al.  Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. , 1991, Circulation research.

[20]  M. Weiner,et al.  Metabolic and functional consequences of blunted myocardial reactive hyperemia. , 1991, The American journal of physiology.

[21]  C. Wiener,et al.  ATP-dependent K+ channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lungs. , 1991, The Journal of clinical investigation.

[22]  J. Greenfield,et al.  Distinction between metabolic and myogenic mechanisms of coronary hyperemic response to brief diastolic occlusion. , 1991, Circulation research.

[23]  J. Daut,et al.  Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. , 1990, Science.

[24]  D. Harrison,et al.  Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin. , 1990, The American journal of physiology.

[25]  N. Standen,et al.  Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. , 1989, Science.

[26]  L. Cucchiarini,et al.  A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells. , 1987, Analytical biochemistry.

[27]  N. Standen,et al.  Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane , 1985, Nature.

[28]  K. Philipson,et al.  Binding of glycolytic enzymes to cardiac sarcolemmal and sarcoplasmic reticular membranes. , 1985, The Journal of biological chemistry.

[29]  S. Vatner,et al.  Effects of coronary artery reperfusion on regional myocardial blood flow and function in conscious baboons. , 1985, Circulation.

[30]  G. Rubanyi,et al.  Endothelium‐Removal Decreases Relaxations of Canine Coronary Arteries Caused by β‐Adrenergic Agonists and Adenosine , 1985, Journal of cardiovascular pharmacology.

[31]  D. Cook,et al.  Intracellular ATP directly blocks K+ channels in pancreatic B-cells , 1984, Nature.

[32]  R. Thompson,et al.  Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. , 1983, The Journal of pharmacology and experimental therapeutics.

[33]  A. Noma,et al.  ATP-regulated K+ channels in cardiac muscle , 1983, Nature.

[34]  D. Saito,et al.  Intracoronary Adenosine Deaminase Reduces Canine Myocardial Reactive Hyperemia , 1981, Circulation research.

[35]  J. A. Snow,et al.  Adenosine Metabolism in Canine Myocardial Reactive Hyperemia , 1978, Circulation research.

[36]  J. Greenfield,et al.  Local effects of acute cellular injury on regional myocardial blood flow. , 1976, The Journal of clinical investigation.

[37]  A. Barger,et al.  SIMPLIFIED TECHNIQUE FOR CHRONIC CATHETERIZATION OF BLOOD VESSELS. , 1964, Journal of applied physiology.

[38]  D. E. Gregg,et al.  Reactive hyperemia characteristics of the myocardium. , 1960, The American journal of physiology.

[39]  F. Plum Handbook of Physiology. , 1960 .

[40]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[41]  J. Schrader,et al.  Role of nitric oxide in reactive hyperemia of the guinea pig heart. , 1992, Circulation research.

[42]  R. Olsson Local factors regulating cardiac and skeletal muscle blood flow. , 1981, Annual review of physiology.

[43]  R. Giles,et al.  Reactive hyperaemia in the dog heart: evidence for a myogenic contribution. , 1977, Cardiovascular research.

[44]  C. Meinert,et al.  A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. , 1970, Diabetes.