ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF GREATEST COMMON DIVISOR MATRICES

Let $\{x_i\}_{i=1}^{\infty}$ be an arbitrary strictly increasing infinite sequence of positive integers. For an integer $n\ge 1$, let $S_n=\{x_1,\ldots,x_n\}$. Let $\varepsilon$ be a real number and $q\ge 1$ a given integer. Let \smash{$\lambda _n^{(1)}\le \cdots\le \lambda _n^{(n)}$} be the eigenvalues of the power GCD matrix $((x_i, x_j)^{\varepsilon})$ having the power $(x_i,x_j)^{\varepsilon}$ of the greatest common divisor of $x_i$ and $x_j$ as its $i,j$-entry. We give a nontrivial lower bound depending on $x_1$ and $n$ for \smash{$\lambda _n^{(1)}$} if $\varepsilon>0$. Especially for $\varepsilon>1$, this lower bound is given by using the Riemann zeta function. Let $x\ge 1$ be an integer. For a sequence \smash{$\{x_i\}_{i=1}^{\infty }$} satisfying that $(x_i, x_j)=x$ for any $i\ne j$ and \smash{$\sum_{i=1}^{\infty }{1\over {x_i}}=\infty$}, we show that if $0<\varepsilon\le 1$, then \smash{${\rm lim}_{n\rightarrow \infty }\lambda _n^{(1)}=x_1^{\varepsilon}-x^{\varepsilon }$}. Let $a\ge 0, b\ge 1$ and $e\ge 0$ be any given integers. For the arithmetic progression \smash{$\{x_{i-e+1}=a+bi\}_{i=e}^{\infty}$}, we show that if $0<\varepsilon\le 1$, then \smash{${\rm lim}_{n\rightarrow \infty }\lambda _n^{(q)}=0$}. Finally, we show that for any sequence \smash{$\{x_i\}_{i=1}^{\infty}$} and any \smash{$\varepsilon>0$, $\lambda_n^{(n-q+1)}$} approaches infinity when $n$ goes to infinity.

[1]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[2]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[3]  Aurel Wintner,et al.  Diophantine Approximations and Hilbert's Space , 1944 .

[4]  Tom M. Apostol,et al.  Arithmetical properties of generalized Ramanujan sums , 1972 .

[5]  Shaofang Hong,et al.  Bounds for determinants of matrices associated with classes of arithmetical functions , 1998 .

[6]  Shaofang Hong,et al.  On the Bourque–Ligh Conjecture of Least Common Multiple Matrices☆ , 1999 .

[7]  Peter Lindqvist,et al.  Note on some greatest common divisor matrices , 1998 .

[8]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[9]  Pentti Haukkanen,et al.  On meet and join matrices associated with incidence functions , 2003 .

[10]  P. McCarthy,et al.  Introduction to Arithmetical Functions , 1985 .

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  Shaofang Hong,et al.  Notes on power LCM matrices , 2004 .

[13]  Scott J. Beslin,et al.  Greatest common divisor matrices , 1989 .

[14]  A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$ , 1995, math/9512211.

[15]  Shaofang Hong,et al.  Gcd-closed sets and determinants of matrices associated with arithmetical functions , 2002 .

[16]  Shaofang Hong,et al.  Factorization of matrices associated with classes of arithmetical functions , 2003 .

[17]  H. Smith,et al.  On the Value of a Certain Arithmetical Determinant , 1875 .

[18]  Franz Mertens,et al.  Ein Beitrag zur analytischen Zahlentheorie. , 1874 .

[19]  P. McCarthy,et al.  A Generalization of Smith's Determinant , 1986, Canadian Mathematical Bulletin.

[20]  S. Ligh,et al.  Matrices Associated with Classes of Arithmetical Functions , 1993 .