The global chemical properties of high-mass star forming clumps at different evolutionary stages
暂无分享,去创建一个
Wei Hua Guo | Yuxin He | Jianjun Zhou | J. Esimbek | W. Ji | Xindi Tang | Ye Yuan | Da-lei Li | Y. Zhang | Yan-Jun Zhang | W. Guo
[1] Jiangshui Zhang,et al. Combination of CN(1-0), HCN(1-0), and HNC(1-0): A possible indicator for a high-mass star formation sequence in the Milky Way , 2015 .
[2] M. Heyer,et al. A 24 μm POINT SOURCE CATALOG OF THE GALACTIC PLANE FROM SPITZER/MIPSGAL , 2014, 1412.4751.
[3] Leiden,et al. ATLASGAL — towards a complete sample of massive star forming clumps ⋆ , 2014, 1406.5078.
[4] T. Henning,et al. Chemical evolution in the early phases of massive star formation - II. Deuteration , 2015, 1503.06594.
[5] O. Miettinen. A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds , 2013, 1311.4300.
[6] J. S. Whitaker,et al. CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY , 2013, 1309.3570.
[7] F. Wyrowski,et al. MALT90: The Millimetre Astronomy Legacy Team 90 GHz Survey , 2011, Publications of the Astronomical Society of Australia.
[8] J. Foster,et al. CHEMISTRY IN INFRARED DARK CLOUD CLUMPS: A MOLECULAR LINE SURVEY AT 3 mm , 2011, 1206.6500.
[9] T. Henning,et al. Chemistry in infrared dark clouds , 2010, 1012.0961.
[10] J. Gauss,et al. Hyperfine structure in the J=1-0 transitions of DCO+, DNC, and (HNC)-C-13: astronomical observations and quantum-chemical calculations , 2009, 0909.0390.
[11] G. A. Moellenbrock,et al. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.
[12] A. Weiss,et al. ATLASGAL - The APEX telescope large area survey of the galaxy at 870 μm , 2009, 0903.1369.
[13] Laurent Pagani,et al. On the frequency of N${_2}$H$^+$ and N${_2}$D${^+}$ , 2008, 0811.3289.
[14] R. Indebetouw,et al. A CATALOG OF EXTENDED GREEN OBJECTS IN THE GLIMPSE SURVEY: A NEW SAMPLE OF MASSIVE YOUNG STELLAR OBJECT OUTFLOW CANDIDATES , 2008, 0810.0530.
[15] Eugene E. Haller,et al. The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.
[16] B. Drouin,et al. Rotational Spectrum of the Formyl Cation, HCO+, to 1.2 THz , 2007 .
[17] D. Padgett,et al. MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm , 2005 .
[18] J. Dickey,et al. The Southern Galactic Plane Survey: H I Observations and Analysis , 2005, astro-ph/0503134.
[19] R. Indebetouw,et al. GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy , 2003, astro-ph/0306274.
[20] P. Caselli,et al. CO Depletion in the Starless Cloud Core L1544 , 1999 .
[21] T. Hirota,et al. Abundances of HCN and HNC in Dark Cloud Cores , 1998 .
[22] H. Schaefer,et al. High level ab initio study on the ground state potential energy hypersurface of the HCO+–COH+ system , 1994 .
[23] T. Henning,et al. Dust opacities for protostellar cores , 1994 .
[24] È. Roueff,et al. A study of HCN, HNC and their isotopometers in OMC-1. I. Abundances and chemistry. , 1992 .
[25] I. Gatley,et al. A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .
[26] J. J. Meulen,et al. Determination of the electric dipole moment of HN+2 , 1990 .
[27] P. Botschwina. An ab initio calculation of the frequencies and IR intensities of the stretching vibrations of HN2 , 1984 .
[28] P. Godfrey,et al. The microwave spectrum of HNC: identification of U90.7 , 1976, Nature.
[29] C. Brogan,et al. Extended Green Objects (EGOs) In The GLIMPSE Survey: A New Sample Of Massive Young Stellar Object Outflow Candidates , 2009 .
[30] M. Horn,et al. Ab initio calculations on molecules of interest to interstellar cloud chemistry , 1993 .