The global chemical properties of high-mass star forming clumps at different evolutionary stages

[1]  Jiangshui Zhang,et al.  Combination of CN(1-0), HCN(1-0), and HNC(1-0): A possible indicator for a high-mass star formation sequence in the Milky Way , 2015 .

[2]  M. Heyer,et al.  A 24 μm POINT SOURCE CATALOG OF THE GALACTIC PLANE FROM SPITZER/MIPSGAL , 2014, 1412.4751.

[3]  Leiden,et al.  ATLASGAL — towards a complete sample of massive star forming clumps ⋆ , 2014, 1406.5078.

[4]  T. Henning,et al.  Chemical evolution in the early phases of massive star formation - II. Deuteration , 2015, 1503.06594.

[5]  O. Miettinen A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds , 2013, 1311.4300.

[6]  J. S. Whitaker,et al.  CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY , 2013, 1309.3570.

[7]  F. Wyrowski,et al.  MALT90: The Millimetre Astronomy Legacy Team 90 GHz Survey , 2011, Publications of the Astronomical Society of Australia.

[8]  J. Foster,et al.  CHEMISTRY IN INFRARED DARK CLOUD CLUMPS: A MOLECULAR LINE SURVEY AT 3 mm , 2011, 1206.6500.

[9]  T. Henning,et al.  Chemistry in infrared dark clouds , 2010, 1012.0961.

[10]  J. Gauss,et al.  Hyperfine structure in the J=1-0 transitions of DCO+, DNC, and (HNC)-C-13: astronomical observations and quantum-chemical calculations , 2009, 0909.0390.

[11]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[12]  A. Weiss,et al.  ATLASGAL - The APEX telescope large area survey of the galaxy at 870 μm , 2009, 0903.1369.

[13]  Laurent Pagani,et al.  On the frequency of N${_2}$H$^+$ and N${_2}$D${^+}$ , 2008, 0811.3289.

[14]  R. Indebetouw,et al.  A CATALOG OF EXTENDED GREEN OBJECTS IN THE GLIMPSE SURVEY: A NEW SAMPLE OF MASSIVE YOUNG STELLAR OBJECT OUTFLOW CANDIDATES , 2008, 0810.0530.

[15]  Eugene E. Haller,et al.  The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.

[16]  B. Drouin,et al.  Rotational Spectrum of the Formyl Cation, HCO+, to 1.2 THz , 2007 .

[17]  D. Padgett,et al.  MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm , 2005 .

[18]  J. Dickey,et al.  The Southern Galactic Plane Survey: H I Observations and Analysis , 2005, astro-ph/0503134.

[19]  R. Indebetouw,et al.  GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy , 2003, astro-ph/0306274.

[20]  P. Caselli,et al.  CO Depletion in the Starless Cloud Core L1544 , 1999 .

[21]  T. Hirota,et al.  Abundances of HCN and HNC in Dark Cloud Cores , 1998 .

[22]  H. Schaefer,et al.  High level ab initio study on the ground state potential energy hypersurface of the HCO+–COH+ system , 1994 .

[23]  T. Henning,et al.  Dust opacities for protostellar cores , 1994 .

[24]  È. Roueff,et al.  A study of HCN, HNC and their isotopometers in OMC-1. I. Abundances and chemistry. , 1992 .

[25]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .

[26]  J. J. Meulen,et al.  Determination of the electric dipole moment of HN+2 , 1990 .

[27]  P. Botschwina An ab initio calculation of the frequencies and IR intensities of the stretching vibrations of HN2 , 1984 .

[28]  P. Godfrey,et al.  The microwave spectrum of HNC: identification of U90.7 , 1976, Nature.

[29]  C. Brogan,et al.  Extended Green Objects (EGOs) In The GLIMPSE Survey: A New Sample Of Massive Young Stellar Object Outflow Candidates , 2009 .

[30]  M. Horn,et al.  Ab initio calculations on molecules of interest to interstellar cloud chemistry , 1993 .