Generalized beta-Reduction and Explicit Substitution

Extending the λ-calculus with either explicit substitution or generalised reduction has been the subject of extensive research recently which still has many open problems. Due to this reason, the properties of a calculus combining both generalised reduction and explicit substitutions have never been studied. This paper presents such a calculus λsg and shows that it is a desirable extension of the λ-calculus. In particular, we show that λsg preserves strong normalisation, is sound and it simulates classical β-reduction. Furthermore, we study the simply typed λ-calculus extended with both generalised reduction and explicit substitution and show that well-typed terms are strongly normalising and that other properties such as subtyping and subject reduction hold.

[1]  Zurab Khasidashvili The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems , 1994, LFCS.

[2]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[3]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[4]  Laurent Regnier,et al.  Lambda-calcul et reseaux , 1992 .

[5]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[6]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[7]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[8]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.

[9]  de Ng Dick Bruijn A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .

[10]  Fairouz Kamareddine,et al.  On Stepwise Explicit Substitution , 1993, Int. J. Found. Comput. Sci..

[11]  Rp Rob Nederpelt,et al.  Selected papers on Automath , 1994 .

[12]  M. Felleisen,et al.  Reasoning about programs in continuation-passing style , 1993 .

[13]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[14]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.

[15]  Fairouz Kamareddine,et al.  Refining Reduction in the Lambda Calculus , 1995, J. Funct. Program..

[16]  S. Peyton-jones,et al.  Implementation of Functional Languages , 1997, Lecture Notes in Computer Science.

[17]  Fairouz Kamareddine,et al.  A reduction relation for which postponement of K-contractions, Conservation and Preservation of Stro , 1996 .

[18]  Fairouz Kamareddine,et al.  Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..

[19]  Rob Nederpelt,et al.  A useful lambda notation , 1992 .

[20]  César A. Muñoz,et al.  Confluence and preservation of strong normalisation in an explicit substitutions calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[21]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[22]  Jerzy Tiuryn,et al.  An analysis of ML typability , 1994, JACM.

[23]  Cj Roel Bloo,et al.  Preservation of strong normalisation for explicit substitution , 1995 .

[24]  Assaf J. Kfoury,et al.  A direct algorithm for type inference in the rank-2 fragment of the second-order λ-calculus , 1994, LFP '94.

[25]  D. Vidal,et al.  Nouvelles notions de réduction en lambda-calcul : Application à la réalisation d'un langage fonctionnel fondé sur la réduction forte , 1989 .

[26]  Assaf J. Kfoury,et al.  Addendum to ``New Notions of Reduction and Non-Semantic Proofs of Beta Strong Normalization in Typed Lambda Calculi'''' , 1995 .

[27]  Hongwei Xi,et al.  On weak and strong normalisations , 1996 .

[28]  Pierre-Louis Curien,et al.  Categorical Combinators , 1986, Inf. Control..

[29]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[30]  Fairouz Kamareddine,et al.  The S-calculus: Its Typed and Its Extended Versions , 1995 .

[31]  Fairouz Kamareddine,et al.  The Barendregt Cube with Definitions and Generalised Reduction , 1996, Inf. Comput..

[32]  Fairouz Kamareddine,et al.  A useful ?-notation , 1996 .

[33]  Matthias Felleisen,et al.  A call-by-need lambda calculus , 1995, POPL '95.

[34]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[35]  Michael Karr "Delayability" in Proofs of Strong Normalizability in the Typed Lambda Calculus , 1985, TAPSOFT, Vol.1.

[36]  Fairouz Kamareddine,et al.  Generalised -reduction and Explicit Substitutions 8th International Conference on Programming , 1996 .

[37]  A. Rios Contributions a l'etude des lambda-calculs avec substitutions explicites , 1993 .