Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection.

Acoustic devices are widely applied in telephone communication, human-computer voice interaction systems, medical ultrasound examination, and other applications. However, traditional acoustic devices are hard to integrate into a flexible system and therefore it is necessary to fabricate light weight and flexible acoustic devices for audible sound generation and detection. Recent advances in acoustic devices have greatly overcome the limitations of conventional acoustic sensors in terms of sensitivity, tunability, photostability, and in vivo applicability by employing nanomaterials. In this review, light weight and flexible nanomaterial-enabled acoustic devices (NEADs) including sound generators and sound detectors are covered. Additionally, the fundamental concepts of acoustic as well as the working principle of the NEAD are introduced in detail. Also, the structures of future acoustic devices, such as flexible earphones and microphones, are forecasted. Further exploration of flexible acoustic devices is a key priority and will have a great impact on the advancement of intelligent robot-human interaction and flexible electronics.

[1]  A. Niskanen,et al.  Fundamental efficiency of nanothermophones: modeling and experiments. , 2010, Nano letters.

[2]  E. Cibula,et al.  All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. , 2005, Optics letters.

[3]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[4]  O. Srivastava,et al.  Synthesis of carbon nanotubes. , 2005, Journal of nanoscience and nanotechnology.

[5]  Jianxin Zhong,et al.  Few‐Layer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction , 2017 .

[6]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[7]  R. Witte,et al.  Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations , 2016 .

[8]  Sang Choon Ko,et al.  Micromachined piezoelectric membrane acoustic device , 2003 .

[9]  T. Ren,et al.  Graphene-on-paper sound source devices. , 2011, ACS nano.

[10]  Kuanmin Mao,et al.  Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection , 2015, Nano Research.

[11]  Kuo-Feng Chen,et al.  Fabrication of a dual-planar-coil dynamic microphone by MEMS techniques , 2010 .

[12]  Rongqing Hui,et al.  Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. , 2014, Optics letters.

[13]  G. Wetsel,et al.  Generalized theory of the photoacoustic effect , 1978 .

[14]  HengAn Wu,et al.  Molecular dynamics study on mechanics of metal nanowire , 2006 .

[15]  O. Farokhzad,et al.  Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. , 2017, Angewandte Chemie.

[16]  D. Nezich,et al.  A novel class of strain gauges based on layered percolative films of 2D materials. , 2012, Nano letters.

[17]  Yi Yang,et al.  A point acoustic device based on aluminum nanowires. , 2016, Nanoscale.

[18]  Da Xing,et al.  Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement. , 2011, Optics letters.

[19]  J. Tour Top-Down versus Bottom-Up Fabrication of Graphene-Based Electronics , 2014 .

[20]  Dianyuan Fan,et al.  Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. , 2015, Optics express.

[21]  Hanping Hu,et al.  Generalized theory of the photoacoustic effect in a multilayer material , 1999 .

[22]  Chang‐Mou Wu,et al.  Sound absorption of electrospun polyvinylidene fluoride/graphene membranes , 2016 .

[23]  Niraj Sinha,et al.  Carbon nanotube-based sensors. , 2006, Journal of nanoscience and nanotechnology.

[24]  Forrest M. Mims,et al.  Alexander Graham Bell and the Photophone: The Centennial of the Invention of Light-Wave Communications, 1880–1980 , 1980 .

[25]  Yong Lin,et al.  Silver nanowires coated on cotton for flexible pressure sensors , 2016 .

[26]  Yuncai Wang,et al.  Enhancing the Brightness of Quantum Dot Light-Emitting Diodes by Multilayer Heterostructures , 2016, IEEE Photonics Journal.

[27]  Peng Jin,et al.  Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm , 2016 .

[28]  Malcolm J. Crocker,et al.  Recent Trends in Porous Sound-Absorbing Materials , 2010 .

[29]  Tian-Ling Ren,et al.  Flexible graphene sound device based on laser reduced graphene , 2017 .

[30]  N. Koshida,et al.  Thermally induced ultrasonic emission from porous silicon , 1999, Nature.

[31]  Y. C. Li,et al.  Theory of suspended carbon nanotube thinfilm as a thermal-acoustic source , 2013 .

[32]  Marcelo Silva Sthel,et al.  Application of laser photoacoustic spectroscopy for the analysis of gas samples emitted by diesel engines , 2003 .

[33]  Jian Gong,et al.  Silver nanowires prepared by modified AAO template method , 2007 .

[34]  Shuangchen Ruan,et al.  Topological Insulator Solution Filled in Photonic Crystal Fiber for Passive Mode-Locked Fiber Laser , 2015, IEEE Photonics Technology Letters.

[35]  E. Coker,et al.  Synthesis of platinum nanowire networks using a soft template. , 2007, Nano letters.

[36]  Dingyuan Tang,et al.  Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. , 2016, Optics express.

[37]  Ken Gall,et al.  On the elastic modulus of metallic nanowires. , 2008, Nano letters.

[38]  Deming Liu,et al.  Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors With Two Wavelengths , 2017, IEEE Photonics Journal.

[39]  Peng Jin,et al.  Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier , 2017 .

[40]  M. Oksanen,et al.  Photoacoustic breakdown sound source in air , 1994 .

[41]  B. Ziaie,et al.  A thermophone on porous polymeric substrate , 2012 .

[42]  P. Chu,et al.  TiL4 -Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. , 2017, Small.

[43]  Nan Zhang,et al.  Electrospun poly(vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator , 2018, Journal of Materials Science.

[44]  Karen Maex,et al.  Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions , 2004 .

[45]  Q. Bao,et al.  Photonics and optoelectronics of two-dimensional materials beyond graphene , 2016, Nanotechnology.

[46]  Faqiang Xu,et al.  Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template , 2005 .

[47]  Seung S. Lee,et al.  Piezoelectric microphone built on circular diaphragm , 2008 .

[48]  B. Shirinzadeh,et al.  A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , 2014, Nature Communications.

[49]  D. Fan,et al.  Few‐Layer Phosphorene‐Decorated Microfiber for All‐Optical Thresholding and Optical Modulation , 2017 .

[50]  Deming Liu,et al.  An Infrasound Sensor Based on Extrinsic Fiber-Optic Fabry–Perot Interferometer Structure , 2016, IEEE Photonics Technology Letters.

[51]  T. Ren,et al.  A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene , 2016, Nanomaterials.

[52]  Shuangchun Wen,et al.  Large Energy, Wavelength Widely Tunable, Topological Insulator Q-Switched Erbium-Doped Fiber Laser , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  Deming Liu,et al.  Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing. , 2018, Optics express.

[54]  Mingzheng Jiang,et al.  A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer , 2001 .

[55]  Marco Bobinger,et al.  Physical modeling and characterization of thermo-acoustic loudspeakers made of silver nano-wire films , 2017 .

[56]  Paola Nicolussi,et al.  Functionalized multiwalled carbon nanotubes as ultrasound contrast agents , 2012, Proceedings of the National Academy of Sciences.

[57]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[58]  T. Kang,et al.  Synthesis, Properties, and Biological Application of Perfect Crystal Gold Nanowires: A Review , 2015 .

[59]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[60]  Wei Huang,et al.  Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. , 2017, ACS nano.

[61]  He Tian,et al.  A reduced graphene oxide sound-emitting device: a new use for Joule heating , 2013 .

[62]  Jianhua Ji,et al.  Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability , 2017 .

[63]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[64]  Deming Liu,et al.  Fiber-Optic Michelson Interferometric Acoustic Sensor Based on a PP/PET Diaphragm , 2016, IEEE Sensors Journal.

[65]  Chang Du,et al.  PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. , 2015, ACS applied materials & interfaces.

[66]  Yong Zhao,et al.  Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber , 2018 .

[67]  Nicolas Brachet,et al.  Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network , 2010 .

[68]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[69]  William W. Gaver Auditory Icons: Using Sound in Computer Interfaces , 1986, Hum. Comput. Interact..

[70]  R. Jha,et al.  Tapered Fiber Attached Nitrile Diaphragm-Based Acoustic Sensor , 2017, Journal of Lightwave Technology.

[71]  He Tian,et al.  Single-layer graphene sound-emitting devices: experiments and modeling. , 2012, Nanoscale.

[72]  M. Welland,et al.  Size effects in the electrical resistivity of polycrystalline nanowires , 2000 .

[73]  Han Hu,et al.  Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite. , 2015, ACS applied materials & interfaces.

[74]  Peter C. Wright,et al.  The experience of enchantment in human–computer interaction , 2006, Personal and Ubiquitous Computing.

[75]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[76]  Hwa-Yaw Tam,et al.  Development of a Fiber-Optic Sensing System for Train Vibration and Train Weight Measurements in Hong Kong , 2012, J. Sensors.

[77]  Troy M. Bouman,et al.  Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones. , 2016, The Journal of the Acoustical Society of America.

[78]  H. D. Arnold,et al.  The Thermophone as a Precision Source of Sound , 1917 .

[79]  Xiang Qi,et al.  Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. , 2016, Nanoscale.

[80]  Wouter Olthuis,et al.  Fabrication of silicon condenser microphones using single wafer technology , 1992 .

[81]  D. K. Sang,et al.  Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self‐Powered Photodetector , 2017 .

[82]  L. Gao,et al.  A Stretchable and Highly Sensitive Graphene‐Based Fiber for Sensing Tensile Strain, Bending, and Torsion , 2015, Advanced materials.

[83]  Bo Liedberg,et al.  Thickness‐Gradient Films for High Gauge Factor Stretchable Strain Sensors , 2015, Advanced materials.

[84]  Bernhard Müller,et al.  Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap , 2001 .

[85]  Yunjiang Rao,et al.  A Highly Sensitive Fiber-Optic Microphone Based on Graphene Oxide Membrane , 2017, Journal of Lightwave Technology.

[86]  Yezhou Yang,et al.  Static behavior of a graphene-based sound-emitting device. , 2012, Nanoscale.

[87]  Komeil Nasouri,et al.  Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption , 2013, Journal of Polymer Research.

[88]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[89]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[90]  T. Ren,et al.  A flexible, transparent and ultrathin single-layer graphene earphone , 2015 .

[91]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[92]  Yihua Gao,et al.  3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. , 2018, ACS nano.

[93]  G. Tröster,et al.  Sensor for Measuring Strain in Textile , 2008, Sensors.

[94]  Yanbiao Liao,et al.  Diaphragm-type fiber-optic interferometric acoustic sensor , 2003 .

[95]  Shi-Jie Cao,et al.  Influential factors on thermoacoustic efficiency of multilayered graphene film loudspeakers for optimal design , 2017 .

[96]  Rajen K Dutta Gold Nanowire Thermophones , 2014 .

[97]  L. Hervella-Nieto,et al.  Review in Sound Absorbing Materials , 2008 .

[98]  He Tian,et al.  High-performance sound source devices based on graphene woven fabrics , 2017 .

[99]  Shaoli Fang,et al.  Underwater sound generation using carbon nanotube projectors. , 2010, Nano letters.

[100]  Li Han Chen,et al.  High performance chitosan diaphragm-based fiber-optic acoustic sensor , 2010 .

[101]  R. Neumann,et al.  Investigation of size effects in the electrical resistivity of single electrochemically fabricated gold nanowires , 2008 .

[102]  Feng Xing,et al.  Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy , 2018, Proceedings of the National Academy of Sciences.

[103]  D. Bellet,et al.  Flexible transparent conductive materials based on silver nanowire networks: a review , 2013, Nanotechnology.

[104]  Hui‐Ming Cheng,et al.  The reduction of graphene oxide , 2012 .

[105]  L. Liao,et al.  Metal‐Ion‐Modified Black Phosphorus with Enhanced Stability and Transistor Performance , 2017, Advanced materials.

[106]  Katsuhiro Kawashima,et al.  Theory and numerical calculation of the acoustic field produced in metal by an electromagnetic ultrasonic transducer , 1976 .

[107]  Mei Zhang,et al.  Alternative nanostructures for thermophones. , 2015, ACS nano.

[108]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[109]  Byung Jin Cho,et al.  Free-Standing Graphene Thermophone on a Polymer-Mesh Substrate. , 2016, Small.

[110]  Ferdinand Braun,et al.  Notiz über Thermophonie , 1898 .

[111]  R. Lu,et al.  Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers , 2016, Scientific Reports.

[112]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[113]  R. Ruoff,et al.  Thermoacoustic Sound Generation from Monolayer Graphene for Transparent and Flexible Sound Sources , 2012, Advanced materials.

[114]  Gerald Urban,et al.  Wide range semiconductor flow sensors , 2000 .

[115]  Lei Wei,et al.  Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning , 2017 .

[116]  Gee-Kung Chang,et al.  Dual-Wavelength Single-Longitudinal-Mode Tm-Doped Fiber Laser Using PM-CMFBG , 2015, IEEE Photonics Technology Letters.

[117]  Zhen Xu,et al.  Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy , 2012, Scientific Reports.

[118]  Shun-Wen Chang,et al.  Thermoacoustic transduction in individual suspended carbon nanotubes. , 2015, ACS nano.

[119]  Ting Wang,et al.  A flexible transparent colorimetric wrist strap sensor. , 2017, Nanoscale.

[120]  Woo Jin Hyun,et al.  Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. , 2015, ACS applied materials & interfaces.

[121]  Jianfeng Zang,et al.  Precise Engineering of Conductive Pathway by Frictional Direct-Writing for Ultrasensitive Flexible Strain Sensors. , 2017, ACS applied materials & interfaces.

[122]  Beth L. Pruitt,et al.  Review: Semiconductor Piezoresistance for Microsystems , 2009, Proceedings of the IEEE.

[123]  Md. Sajibul Alam Bhuyan,et al.  Synthesis of graphene , 2016, International Nano Letters.

[124]  Sathish Chander Dhanabalan,et al.  Emerging Trends in Phosphorene Fabrication towards Next Generation Devices , 2017, Advanced science.

[125]  Qiang Liu,et al.  High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. , 2016, ACS nano.

[126]  K. Cooper,et al.  Miniature all-silica fiber optic pressure and acoustic sensors. , 2005, Optics letters.

[127]  I. Park,et al.  Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review , 2016 .

[128]  J. A. Voorthuyzen,et al.  Semiconductor-based electret sensors for sound and pressure , 1989 .

[129]  W. Choi,et al.  Synthesis of Graphene and Its Applications: A Review , 2010 .

[130]  D. H. S. Maithripala,et al.  Direct measurement of thermal conductivity of aluminum nanowires , 2009 .

[131]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[132]  Jian Fang,et al.  High-sensitivity acoustic sensors from nanofibre webs , 2016, Nature Communications.

[133]  Jian-min Zhou,et al.  Application of mid-infrared photoacoustic spectroscopy in monitoring carbonate content in soils , 2013 .

[134]  Ilker S. Bayer,et al.  Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. , 2012, Advances in colloid and interface science.

[135]  Tao Liu,et al.  A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors , 2012, J. Sensors.

[136]  He Tian,et al.  Transparent, flexible, ultrathin sound source devices using Indium Tin oxide films , 2011 .

[137]  Gerald Diebold,et al.  Chemical Generation of Acoustic Waves: A Giant Photoacoustic Effect , 1995, Science.

[138]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[139]  Tingting Yang,et al.  Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring , 2014 .

[140]  Jing Zhou,et al.  High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas , 2016 .

[141]  P. Chu,et al.  Metabolizable Ultrathin Bi2 Se3 Nanosheets in Imaging-Guided Photothermal Therapy. , 2016, Small.

[142]  Wouter Olthuis,et al.  A silicon condenser microphone with polyimide diaphragm and backplate , 1997 .

[143]  Yongtaek Hong,et al.  Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. , 2015, Nanoscale.

[144]  Jong-Man Kim,et al.  Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring , 2018, Nanotechnology.

[145]  Gisela Hess,et al.  A subminiature condenser microphone with silicon nitride membrane and silicon back plate , 1989 .

[146]  Weiwei Hu,et al.  Analytical Perspective of Interfering Resonances in High-Index-Contrast Periodic Photonic Structures , 2016, IEEE Journal of Quantum Electronics.

[147]  Feng Yin,et al.  Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. , 2017, Journal of materials chemistry. B.

[148]  D. R. Andersen,et al.  Third-Order Optical Response of Metallic Armchair Graphene Nanoribbons to an Elliptically-Polarized Terahertz Excitation Field , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[149]  F. Bozon-Verduraz,et al.  One-step construction of silver nanowires in hexagonal mesoporous silica using the polyol process , 2003 .

[150]  R. Mohan,et al.  Metallic nanowires: Mechanical properties – Theory and experiment , 2018, Applied Materials Today.

[151]  W. Kühnel,et al.  A silicon condenser microphone with structured back plate and silicon nitride membrane , 1992 .

[152]  He Tian,et al.  An intelligent artificial throat with sound-sensing ability based on laser induced graphene , 2017, Nature Communications.

[153]  Harry Rolnick,et al.  Tension Coefficient of Resistance of Metals , 1930 .

[154]  L. Dai,et al.  Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. , 2016, Angewandte Chemie.

[155]  C. Murphy,et al.  Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires , 2003 .

[156]  Zhinan Guo,et al.  2 μm passively Q-switched laser based on black phosphorus , 2016 .

[157]  K. Müllen,et al.  From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. , 2012, Angewandte Chemie.

[158]  Miao Zhu,et al.  Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition , 2015, Nano Research.

[159]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[160]  Shuangchun Wen,et al.  The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber , 2014 .

[161]  Ting Wang,et al.  Flexible Transparent Electronic Gas Sensors. , 2016, Small.

[162]  D. Horsell,et al.  Multi-frequency sound production and mixing in graphene , 2017, Scientific Reports.

[163]  Zhanjun Wu,et al.  Gate-Free Hydrogel-Graphene Transistors as Underwater Microphones. , 2018, ACS applied materials & interfaces.

[164]  A. Naderi,et al.  Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance , 2013, Journal of Polymer Research.

[165]  Jianxin Zhong,et al.  Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution , 2016 .

[166]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[167]  Xiaodong Chen,et al.  Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing. , 2015, Small.

[168]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[169]  Nathanael K. Mayo,et al.  Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source , 2014, Nanotechnology.

[170]  Yunping Hu,et al.  High performance strain sensor based on buckypaper for full-range detection of human motions. , 2018, Nanoscale.

[171]  C. Dimitrakopoulos,et al.  Graphene : synthesis and applications , 2012 .

[172]  Yi Yang,et al.  Graphene-Paper Pressure Sensor for Detecting Human Motions. , 2017, ACS nano.

[173]  Hannu Sipola,et al.  Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate , 2000 .

[174]  Allen Gersho,et al.  Theory of the photoacoustic effect with solids , 1975 .

[175]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[176]  A. Ando,et al.  High-Performance Condenser Microphone With Single-Crystalline Silicon Diaphragm and Backplate , 2007, IEEE Sensors Journal.

[177]  Ke Chen,et al.  High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection , 2017 .

[178]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[179]  Jens Prager,et al.  Physics of thermo-acoustic sound generation , 2013 .

[180]  Christian G Elowsky,et al.  Hydrogel microphones for stealthy underwater listening , 2016, Nature Communications.

[181]  Ray H Baughman,et al.  Increasing the efficiency of thermoacoustic carbon nanotube sound projectors , 2013, Nanotechnology.

[182]  Liangbi Su,et al.  Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. , 2016, Optics express.

[183]  J. Bonevich,et al.  Electrical properties of superfilled sub-micrometer silver metallizations , 2004 .

[184]  Dianyuan Fan,et al.  Broadband Nonlinear Optical Response in Few‐Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability , 2017 .

[185]  Maomao Chen,et al.  A novel soft-template technique to synthesize metal Ag nanowire , 2001 .

[186]  Youngoh Lee,et al.  Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones , 2018, Science Advances.

[187]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[188]  Qiu Jiang,et al.  MXenes stretch hydrogel sensor performance to new limits , 2018, Science Advances.

[189]  Rajesh Rajamani,et al.  Carbon nanotube-based transparent thin film acoustic actuators and sensors , 2006 .

[190]  R. Gabel The Early Competitive Era in Telephone Communication, 1893-1920 , 1969 .

[191]  Guohua Jiang,et al.  Study on the synthesis of silver nanowires with adjustable diameters through the polyol process , 2006 .

[192]  Shangchun Fan,et al.  Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm , 2013, IEEE Photonics Technology Letters.

[193]  John W. Cookson Theory of the Piezo-Resistive Effect , 1935 .