Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains.

The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.

[1]  Carmen A Mannella,et al.  The relevance of mitochondrial membrane topology to mitochondrial function. , 2006, Biochimica et biophysica acta.

[2]  R. Gilkerson,et al.  The cristal membrane of mitochondria is the principal site of oxidative phosphorylation , 2003, FEBS letters.

[3]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[4]  N. Pfanner,et al.  Import of proteins into mitochondria. , 1988, Methods in cell biology.

[5]  S. Campello,et al.  Mitochondrial shape changes: orchestrating cell pathophysiology , 2010, EMBO reports.

[6]  J. Xie,et al.  The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled‐coil‐helix coiled‐coil‐helix domain‐containing protein 3 and 6 and DnaJC11 , 2007, FEBS letters.

[7]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[8]  G. Perkins,et al.  Working Title : A thermodynamic model describing the nature of the crista junction ; a structural motif in the mitochondrion , 2002 .

[9]  S. Jakobs,et al.  MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization , 2012, Molecular biology of the cell.

[10]  Benedikt Westermann,et al.  Mitochondrial fusion and fission in cell life and death , 2010, Nature Reviews Molecular Cell Biology.

[11]  J. Martinou,et al.  Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. , 2011, Developmental cell.

[12]  A. Reichert,et al.  Dynamic subcompartmentalization of the mitochondrial inner membrane , 2006, The Journal of cell biology.

[13]  Benedikt Westermann,et al.  Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. , 2008, Genes & development.

[14]  Martin J. Mueller,et al.  Sam50 Functions in Mitochondrial Intermembrane Space Bridging and Biogenesis of Respiratory Complexes , 2012, Molecular and Cellular Biology.

[15]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[16]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[17]  Martin van der Laan,et al.  Role of MINOS in mitochondrial membrane architecture and biogenesis. , 2012, Trends in cell biology.

[18]  G. Cavallaro Genome-wide analysis of eukaryotic twin CX9C proteins. , 2010, Molecular bioSystems.

[19]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[20]  T. Langer,et al.  Prohibitins and the functional compartmentalization of mitochondrial membranes , 2009, Journal of Cell Science.

[21]  J. Herrmann MINOS is plus: a Mitofilin complex for mitochondrial membrane contacts. , 2011, Developmental cell.

[22]  R. Jagasia,et al.  Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g , 2009, The Journal of cell biology.

[23]  T. Endo,et al.  Structural insight into the mitochondrial protein import system. , 2011, Biochimica et biophysica acta.

[24]  Li Li,et al.  The mitochondrial inner membrane protein mitofilin controls cristae morphology. , 2005, Molecular biology of the cell.

[25]  Benedikt Westermann,et al.  A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria , 2011, The Journal of cell biology.

[26]  N. Pfanner,et al.  Mitochondrial protein import: from proteomics to functional mechanisms , 2010, Nature Reviews Molecular Cell Biology.

[27]  J. Riemer,et al.  The intermembrane space of mitochondria. , 2010, Antioxidants & redox signaling.

[28]  A. Keating,et al.  Structural specificity in coiled-coil interactions. , 2008, Current opinion in structural biology.

[29]  S. Jakobs,et al.  Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast , 2006, FEBS letters.

[30]  Mason R. Mackey,et al.  ChChd3, an Inner Mitochondrial Membrane Protein, Is Essential for Maintaining Crista Integrity and Mitochondrial Function , 2010, The Journal of Biological Chemistry.

[31]  A. Reichert,et al.  Cristae formation-linking ultrastructure and function of mitochondria. , 2009, Biochimica et biophysica acta.

[32]  Matthias Mann,et al.  The mitochondrial contact site complex, a determinant of mitochondrial architecture , 2011, The EMBO journal.

[33]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[34]  Y. Bahk,et al.  Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology , 2010, Journal of cellular physiology.

[35]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[36]  T. Lithgow,et al.  Importing Mitochondrial Proteins: Machineries and Mechanisms , 2009, Cell.

[37]  J. Gulbis,et al.  Mitochondrial protein-import machinery: correlating structure with function. , 2007, Trends in cell biology.

[38]  T. Lithgow,et al.  Evolution of the Molecular Machines for Protein Import into Mitochondria , 2006, Science.

[39]  Albert Sickmann,et al.  Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. , 2011, Journal of molecular biology.

[40]  A. M. van der Bliek,et al.  A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans , 2011, Molecular biology of the cell.

[41]  J. Shaw,et al.  Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. , 2005, Annual review of genetics.