Ultrabright and monochromatic nanowire electron sources

The resolution of the electron microscope is now largely limited by the performance of its electron source when various aberrations in the electron imaging system, especially spherical aberrations, are corrected. A nanowire tip could be an ideal point electron source, where electrons are emitted from a small physical area. In this article, we review recent advances in electric-field-induced electron emission using a single nanowire, specifically, single-crystalline lanthanum hexaboride (LaB_6) nanowire, compared to the state-of-the-art contemporary tungsten cold-field electron emitter W(310) as well as single atom tip and single-carbon nanotube emitters. Owing to its low work function, improved emission stability, and high emission brightness, the LaB_6 nanowire as a cold-field-emission electron source offers a new and exciting opportunity for developing the next generation of electron microscopes.

[1]  T. Ohshima,et al.  High emission current of 1000 μA at 4 × 10−10 Pa from W⟨310⟩ cold field emitter in electron gun , 2016 .

[2]  Norio Shinya,et al.  An ultrabright and monochromatic electron point source made of a LaB6 nanowire. , 2016, Nature Nanotechnology.

[3]  M. Nagao,et al.  Fabrication of gated nano electron source for vacuum nanoelectronics , 2015 .

[4]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[5]  D. Jaffray,et al.  Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor. , 2013, Small.

[6]  N. Shinya,et al.  Synthesis and Characterization of Single Crystalline Hafnium Carbide Nanowires , 2012 .

[7]  M. Monthioux,et al.  New carbon cone nanotip for use in a highly coherent cold field emission electron microscope , 2012 .

[8]  N. Shinya,et al.  Field emission from single-crystalline HfC nanowires , 2012 .

[9]  C. Oshima,et al.  Low fluctuation and drift of field emission currents emitted from Pd/W nanotips , 2011 .

[10]  P. Hommelhoff,et al.  Attosecond control of electrons emitted from a nanoscale metal tip , 2011, Nature.

[11]  Tianyou Zhai,et al.  One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. , 2011, Chemical Society reviews.

[12]  T. Ohshima,et al.  Stabilization of a tungsten ⟨310⟩ cold field emitter , 2010 .

[13]  Norio Shinya,et al.  Nanostructured LaB6 field emitter with lowest apical work function. , 2010, Nano letters.

[14]  Lei Xie,et al.  Plasma‐Assisted Approaches in Inorganic Nanostructure Fabrication , 2010, Advanced materials.

[15]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[16]  Y. Saito,et al.  Evaluations of carbon nanotube field emitters for electron microscopy , 2009 .

[17]  J. Lebowitz,et al.  Space charge effects in field emission: One dimensional theory , 2009, 0910.5703.

[18]  T. Tsong,et al.  Noble-Metal Covered W(111) Single-Atom Electron Sources , 2009, ECS Transactions.

[19]  T. Tsong,et al.  A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter , 2009, Nanotechnology.

[20]  Lianmao Peng,et al.  Field-emission characteristics of individual carbon nanotubes with a conical tip: the validity of the Fowler-Nordheim theory and maximum emission current. , 2008, Small.

[21]  T. Tsong,et al.  Field emission spectra of single-atom tips with thermodynamically stable structures , 2008 .

[22]  C. Oshima,et al.  Direct Confirmation of the High Coherency of the Electron Beam from a Nanotip , 2008 .

[23]  S. Mizuno,et al.  Field-assisted oxygen etching for sharp field-emission tip , 2008 .

[24]  J. E. Barth,et al.  Probe current, probe size, and the practical brightness for probe forming systems , 2008 .

[25]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[26]  O. Zhou,et al.  Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices , 2006 .

[27]  G. Schwind,et al.  Comparison of parameters for Schottky and cold field emission sources , 2006 .

[28]  O. Zhou,et al.  Fabrication and characterization of single carbon nanotube emitters as point electron sources , 2006 .

[29]  G. D. de Wijs,et al.  Ab initio and work function and surface energy anisotropy of LaB6. , 2006, The journal of physical chemistry. B.

[30]  Jason Pitters,et al.  Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. , 2006, The Journal of chemical physics.

[31]  J. E. Barth,et al.  Source brightness and useful beam current of carbon nanotubes and other very small emitters , 2006 .

[32]  Otto Zhou,et al.  Field Emission of Electrons from Single LaB6 Nanowires , 2006 .

[33]  R. Reed,et al.  Extent of back diffusion during solidification of experimental nickel based single crystal superalloy , 2006 .

[34]  T. Tsong,et al.  Demountable Single-Atom Electron Source , 2005 .

[35]  William I. Milne,et al.  Low noise and stable emission from carbon nanotube electron sources , 2005 .

[36]  Otto Zhou,et al.  Single-crystalline GdB6 nanowire field emitters. , 2005, Journal of the American Chemical Society.

[37]  D. Cox,et al.  Electron field emission from a single carbon nanotube: effects of anode location , 2005, 2005 International Vacuum Nanoelectronics Conference.

[38]  Niels de Jonge,et al.  Optical performance of carbon-nanotube electron sources. , 2005, Physical review letters.

[39]  P. Schwoebel,et al.  High current, high current density field emitter array cathodes , 2004, IVNC 2004.

[40]  Y. Horiike,et al.  Coherent electron emission from carbon nanotubes. Young's interference in the emission patterns , 2002 .

[41]  Richard G. Forbes,et al.  Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism ☆ , 2001 .

[42]  P. Kruit,et al.  Brightness measurements of a ZrO/W Schottky electron emitter in a transmission electron microscope , 1999 .

[43]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[44]  J. Spence,et al.  Brightness measurements of nanometer-sized field-emission-electron sources , 1993 .

[45]  J. Spence,et al.  Aberrations of emission cathodes: Nanometer diameter field-emission electron sources , 1993 .

[46]  Purcell,et al.  Field-emission electron spectroscopy of single-atom tips. , 1992, Physical review letters.

[47]  Klaus Christmann,et al.  Interaction of hydrogen with solid surfaces , 1988 .

[48]  A. Naumovets,et al.  Surface diffusion of adsorbates , 1985 .

[49]  C. Spindt,et al.  Field emission cathode array development for high-current-density applications , 1983 .

[50]  Seiji Yamamoto,et al.  Stability of carbon field emission current , 1979 .

[51]  U. Kawabe,et al.  Field-emission and field-ion microscopy of lanthanum hexaboride , 1977 .

[52]  B. E. Nieuwenhuys,et al.  Influence of the surface structure on the adsorption of hydrogen on platinum, as studied by field emission probe-hole microscopy , 1976 .

[53]  S. Fukuhara,et al.  Field Emission Current Instability in the “Ever-Decreasing” Region , 1976 .

[54]  L. W. Swanson,et al.  Field electron cathode stability studies: Zirconium/tungsten thermal‐field cathode , 1975 .

[55]  A V Crewe,et al.  Visibility of Single Atoms , 1970, Science.

[56]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[57]  G. Schwind,et al.  Chapter 2 A Review of the Cold-Field Electron Cathode , 2009 .

[58]  Shigehiko Yamamoto Fundamental physics of vacuum electron sources , 2005 .

[59]  H. Shimoyama,et al.  Theoretical considerations on electron optical brightness for thermionic, field and T-F emissions , 1984 .