Using CMA-ES for tuning coupled PID controllers within models of combustion engines

Proportional integral derivative (PID) controllers are important and widely used tools of system control. In this paper, we deal with the problem of tuning multiple coupled PID controllers within the practical context of combustion engine simulations, where no information about the controlled system is provided. We formulate the problem as a black-box optimization problem and, based on its properties and practical limitations, we find and tune the appropriate optimization algorithm: Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population restart strategy, elitist parent selection and active covariance matrix adaptation. Details of the algorithm's experiment-based calibration are explained as well as derivation of a suitable objective function. Finally, the method's usability is verified on six models of real engines.

[1]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[2]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[3]  D. Graham,et al.  The synthesis of "optimum" transient response: Criteria and standard forms , 1953, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[4]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[5]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[6]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[7]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[8]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[9]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[10]  Fang Sheng,et al.  Genetic algorithm and simulated annealing for optimal robot arm PID control , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  S. P. Ghoshal Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control , 2004 .

[12]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[13]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[14]  S. Baskar,et al.  Covariance matrix adaptation evolution strategy based design of centralized PID controller , 2010, Expert Syst. Appl..

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[17]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[18]  Anne Auger,et al.  BBOB 2009: Comparison Tables of All Algorithms on All Noiseless Functions , 2010 .

[19]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[20]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[21]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[22]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[23]  Wael Mansour Korani Bacterial foraging oriented by Particle Swarm Optimization strategy for PID tuning , 2009, 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA).

[24]  Raymond Ros,et al.  COCO - COmparing Continuous Optimizers : The Documentation , 2011 .

[25]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[26]  Petros Koumoutsakos,et al.  Evolutionary Optimization of Feedback Controllers for Thermoacoustic Instabilities , 2008 .

[27]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[28]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[29]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[32]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[33]  Zafer Bingul A New PID Tuning Technique Using Differential Evolution for Unstable and Integrating Processes with Time Delay , 2004, ICONIP.

[34]  K. Tanaka,et al.  PID controller tuning based on the covariance matrix adaptation evolution strategy , 2009, 2009 ICCAS-SICE.

[35]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[36]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[37]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[38]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[39]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[40]  Nikolaus Hansen,et al.  CMA-ES with Two-Point Step-Size Adaptation , 2008, ArXiv.

[41]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..