High magnesium mobility in ternary spinel chalcogenides

Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. The development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. Here we demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01–0.1 mS cm–1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door for the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.Low magnesium mobility in solids represents a significant obstacle to the development of Mg intercalation batteries. Here the authors show that substantial magnesium ion mobility can be achieved in close-packed ternary selenide spinel materials.

[1]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[2]  W. M. Yim,et al.  Preparation and Properties of II ‐ Ln2 ‐ S 4 Ternary Sulfides , 1973 .

[3]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[4]  B. Dunn,et al.  Ion transport in Ca(2+), Sr(2+), Ba(2+) and Pb(2+) beta aluminas , 1983 .

[5]  Junichi Ishikawa,et al.  Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system , 1987 .

[6]  I. D. Brown,et al.  What Factors Determine Cation Coordination Numbers , 1988 .

[7]  Kaname Ito,et al.  Solid electrolytes with multivalent cation conduction (2) zinc ion conduction in ZnZrPO4 system , 1990 .

[8]  Asta,et al.  First-principles phase-stability study of fcc alloys in the Ti-Al system. , 1992, Physical review. B, Condensed matter.

[9]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[10]  I. Farnan,et al.  Bonding and dynamical phenomena in MgO: A high temperature 17O and 25Mg NMR study , 1994 .

[11]  W. Howells,et al.  Fast-ion conduction and the structure of beta -Mg3Bi2 , 1994 .

[12]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[13]  K. Range,et al.  Rietveld structure refinement of two high-pressure spinels: ZnIn2S4−II and MnIn2Se4−II , 1996 .

[14]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[15]  T. Egawa,et al.  Trivalent Al3+ ion conduction in aluminum tungstate solid , 1997 .

[16]  T. Egawa,et al.  Trivalent aluminum ionic conduction in the aluminum tungstate-scandium tungstate-lutetium tungstate solid solution system , 1998 .

[17]  T. Egawa,et al.  Trivalent Aluminum Ionic Conduction in the Aluminum Tungstate—Scandium Tungstate—Lutetium Tungstate Solid Solution System. , 1998 .

[18]  Christopher M Wolverton,et al.  First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2 , 1998 .

[19]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[20]  J. Jamnik,et al.  Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions , 1999 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[23]  G. Adachi,et al.  Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites , 2000 .

[24]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[25]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[26]  G. P. Johari The configurational entropy theory and the heat capacity decrease of orientationally disordered crystals on cooling to 0K , 2001 .

[27]  C. Wolverton Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys , 2001 .

[28]  G. Adachi,et al.  Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes , 2001 .

[29]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[30]  Pierre Y. Julien,et al.  The On-Going Challenge , 2002 .

[31]  J. Ibers,et al.  Rare-earth transition-metal chalcogenides. , 2002, Chemical reviews.

[32]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[33]  P. Heitjans,et al.  Tracer diffusion measurements in solid lithium: a test case for the comparison between NMR in static and pulsed magnetic field gradients after upgrading a standard solid state NMR spectrometer. , 2004, Solid state nuclear magnetic resonance.

[34]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[35]  Wei Lai Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors : A Case Study of Ceria , 2005 .

[36]  P. Heitjans,et al.  Diffusion in Condensed Matter , 2005 .

[37]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[38]  AgY AgTi,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals : review of 80 binary alloys , 2008 .

[39]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[40]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[41]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[42]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[43]  C. Wolverton,et al.  First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds , 2011 .

[44]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[45]  V. Thangadurai,et al.  Li self-diffusion in garnet-type Li7La3Zr2O12as probed directly by diffusion-inducedLi7spin-lattice relaxation NMR spectroscopy , 2011 .

[46]  R. Drautz,et al.  High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides. , 2012, Physical chemistry chemical physics : PCCP.

[47]  P. Heitjans,et al.  Extremely slow Li ion dynamics in monoclinic Li2TiO3--probing macroscopic jump diffusion via 7Li NMR stimulated echoes. , 2012, Physical chemistry chemical physics : PCCP.

[48]  P. Heitjans,et al.  NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. , 2012, Solid state nuclear magnetic resonance.

[49]  P. Heitjans,et al.  Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7Li NMR Spectroscopy and Conductivity Measurements , 2012 .

[50]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[51]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[52]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[53]  M. Wilkening,et al.  Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR. , 2013, Physical chemistry chemical physics : PCCP.

[54]  K. Miwa,et al.  A novel inorganic solid state ion conductor for rechargeable Mg batteries. , 2014, Chemical communications.

[55]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[56]  Rahul Malik,et al.  Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations , 2014 .

[57]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[58]  P. Bottke,et al.  Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements. , 2014, Physical chemistry chemical physics : PCCP.

[59]  S. Takagi,et al.  Magnesium ion dynamics in Mg(BH4)2(1−x)X2x (X = Cl or AlH4) from first-principles molecular dynamics simulations , 2014 .

[60]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[61]  G. Ceder,et al.  The Intercalation Phase Diagram of Mg in V2O5 from First-Principles , 2015, 1505.07731.

[62]  Dennis Nordlund,et al.  Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host , 2015, Advanced materials.

[63]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[64]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction , 2015 .

[65]  Kristin A. Persson,et al.  First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. , 2015, Chemical communications.

[66]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[67]  A. Burrell,et al.  Formation of MgO during Chemical Magnesiation of Mg-Ion Battery Materials , 2015 .

[68]  Matthew M. Huie,et al.  Cathode materials for magnesium and magnesium-ion based batteries , 2015 .

[69]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[70]  Albert L. Lipson,et al.  A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery , 2016 .

[71]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[72]  E. Carter,et al.  Elucidating Structural Disorder and the Effects of Cu Vacancies on the Electronic Properties of Cu2ZnSnS4 , 2016 .

[73]  Anubhav Jain,et al.  Evaluation of sulfur spinel compounds for multivalent battery cathode applications , 2016 .

[74]  R. Cava,et al.  Li0.6[Li0.2Sn0.8S2] – a layered lithium superionic conductor , 2016 .

[75]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[76]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[77]  E. Carter,et al.  Determining and Controlling the Stoichiometry of Cu2ZnSnS4 Photovoltaics: The Physics and Its Implications , 2016 .

[78]  Linda F. Nazar,et al.  A high capacity thiospinel cathode for Mg batteries , 2016 .

[79]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[80]  W. Richards,et al.  Compatibility Issues Between Electrodes and Electrolytes in Solid-State Batteries , 2017 .

[81]  G. Ceder,et al.  Influence of Inversion on Mg Mobility and Electrochemistry in Spinels , 2017, 1708.07458.

[82]  Alexander B. Brady,et al.  Magnesium-ion battery-relevant electrochemistry of MgMn2O4: crystallite size effects and the notable role of electrolyte water content. , 2017, Chemical communications.

[83]  Rahul Malik,et al.  Cumulative Author Index , 1999, Powder Diffraction.