Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods

Two new multiplicative bias correction techniques for nonparametric multivariate density estimation in the context of positively supported data are proposed. Both methods reach an optimal rate of convergence of the mean squared error of order O ( n - 8 / ( 8 + d ) ) , where d is the dimension of the underlying data set. In addition, they overcome the boundary effect and their values are always non-negative. Asymptotic properties like bias and variance are investigated. Moreover, the performance of both estimators is studied in Monte Carlo simulations and in two real data examples.

[1]  Narayanaswamy Balakrishnan,et al.  The Generalized Birnbaum–Saunders Distribution and Its Theory, Methodology, and Application , 2008 .

[2]  Masayuki Hirukawa,et al.  Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval , 2010, Comput. Stat. Data Anal..

[3]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[4]  Karine Bertin,et al.  Adaptive estimation of a density function using beta kernels , 2014 .

[5]  Song-xi Chen,et al.  Beta kernel estimators for density functions , 1999 .

[6]  Jens Perch Nielsen,et al.  A simple bias reduction method for density estimation , 1995 .

[7]  Olivier Scaillet,et al.  Density estimation using inverse and reciprocal inverse Gaussian kernels , 2004 .

[8]  David W. Scott,et al.  On Improving Convergence Rates for Nonnegative Kernel Density Estimators , 1980 .

[9]  Helton Saulo,et al.  Generalized Birnbaum-Saunders kernel density estimators and an analysis of financial data , 2013, Comput. Stat. Data Anal..

[10]  Nikolay Gospodinov,et al.  Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes , 2008 .

[11]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[12]  N. Hjort,et al.  Nonparametric Density Estimation with a Parametric Start , 1995 .

[13]  Xiaodong Jin,et al.  Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data , 2003 .

[14]  Masayuki Hirukawa,et al.  Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data , 2015 .

[15]  N. Klutchnikoff,et al.  Minimax properties of beta kernel estimators , 2011 .

[16]  Masayuki Hirukawa,et al.  Nonnegative bias reduction methods for density estimation using asymmetric kernels , 2014, Comput. Stat. Data Anal..

[17]  C. C. Kokonendji,et al.  Discrete associated kernels method and extensions , 2011 .

[18]  Rohana J. Karunamuni,et al.  On kernel density estimation near endpoints , 1998 .

[19]  Olivier Scaillet,et al.  The estimation of copulas : theory and practice , 2007 .

[20]  Taoufik Bouezmarni,et al.  Nonparametric density estimation for multivariate bounded data , 2007 .